Cargando…
Dynamic topic modeling of twitter data during the COVID-19 pandemic
In an effort to gauge the global pandemic’s impact on social thoughts and behavior, it is important to answer the following questions: (1) What kinds of topics are individuals and groups vocalizing in relation to the pandemic? (2) Are there any noticeable topic trends and if so how do these topics c...
Autores principales: | Bogdanowicz, Alexander, Guan, ChengHe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140268/ https://www.ncbi.nlm.nih.gov/pubmed/35622866 http://dx.doi.org/10.1371/journal.pone.0268669 |
Ejemplares similares
-
Detecting sentiment dynamics and clusters of Twitter users for trending topics in COVID-19 pandemic
por: Ahmed, Md Shoaib, et al.
Publicado: (2021) -
Leveraging twitter data to understand nurses’ emotion dynamics during the COVID-19 pandemic
por: Zhou, Jianlong, et al.
Publicado: (2023) -
Public Perception of the COVID-19 Pandemic on Twitter: Sentiment Analysis and Topic Modeling Study
por: Boon-Itt, Sakun, et al.
Publicado: (2020) -
Diet during the COVID-19 pandemic: An analysis of Twitter data
por: Hernandez, Mark A., et al.
Publicado: (2022) -
Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on Twitter
por: Xue, Jia, et al.
Publicado: (2020)