Cargando…
Privacy: An Axiomatic Approach
The increasing prevalence of large-scale data collection in modern society represents a potential threat to individual privacy. Addressing this threat, for example through privacy-enhancing technologies (PETs), requires a rigorous definition of what exactly is being protected, that is, of privacy it...
Autores principales: | Ziller, Alexander, Mueller, Tamara T., Braren, Rickmer, Rueckert, Daniel, Kaissis, Georgios |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140502/ https://www.ncbi.nlm.nih.gov/pubmed/35626597 http://dx.doi.org/10.3390/e24050714 |
Ejemplares similares
-
Medical imaging deep learning with differential privacy
por: Ziller, Alexander, et al.
Publicado: (2021) -
Efficient, high-performance semantic segmentation using multi-scale feature extraction
por: Knolle, Moritz, et al.
Publicado: (2021) -
Deep Convolutional Neural Network-Assisted Feature Extraction for Diagnostic Discrimination and Feature Visualization in Pancreatic Ductal Adenocarcinoma (PDAC) versus Autoimmune Pancreatitis (AIP)
por: Ziegelmayer, Sebastian, et al.
Publicado: (2020) -
An Axiomatic Approach to Reversible Computation
por: Lanese, Ivan, et al.
Publicado: (2020) -
Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study
por: Dou, Qi, et al.
Publicado: (2021)