Cargando…

A Comparison of Particulate Exposure Levels during Taxi, Bus, and Metro Commuting among Four Chinese Megacities

Exposure to inhalable particulate matter pollution is a hazard to human health. Many studies have examined the in-transit particulate matter pollution across multiple travel modes. However, limited information is available on the comparison of in-transit exposure among cities that experience differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ying, Huang, Zhengdong, Huang, Jiacheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140565/
https://www.ncbi.nlm.nih.gov/pubmed/35627367
http://dx.doi.org/10.3390/ijerph19105830
Descripción
Sumario:Exposure to inhalable particulate matter pollution is a hazard to human health. Many studies have examined the in-transit particulate matter pollution across multiple travel modes. However, limited information is available on the comparison of in-transit exposure among cities that experience different climates and weather patterns. This study aimed to examine the variations in in-cabin particle concentrations during taxi, bus, and metro commutes among four megacities located in the inland and coastal areas of China. To this end, we employed a portable monitoring approach to measure in-transit particle concentrations and the corresponding transit conditions using spatiotemporal information. The results highlighted significant differences in in-cabin particle concentrations among the four cities, indicating that PM concentrations varied in an ascending order of, and the ratios of different-sized particle concentrations varied in a descending order of CS, SZ, GZ, and WH. Variations in in-cabin particle concentrations during bus and metro transits between cities were mainly positively associated with urban background particle concentrations. Unlike those in bus and metro transit, in-cabin PM concentrations in taxi transit were negatively associated with urban precipitation and wind speed. The variations in particle concentrations during the trip were significantly associated with passenger density, posture, the in-cabin location of investigators, and window condition, some of which showed interactive effects. Our findings suggest that improving the urban background environment is essential for reducing particulate pollution in public transport microenvironments. Moreover, optimizing the scheduling of buses and the distribution of bus stops might contribute to mitigating the in-cabin exposure levels in transit. With reference to our methods and insights, policymakers and other researchers may further explore in-transit exposure to particle pollution in different cities.