Cargando…
Multi-Objective Artificial Bee Colony Algorithm Based on Scale-Free Network for Epistasis Detection
In genome-wide association studies, epistasis detection is of great significance for the occurrence and diagnosis of complex human diseases, but it also faces challenges such as high dimensionality and a small data sample size. In order to cope with these challenges, several swarm intelligence metho...
Autores principales: | Gu, Yijun, Sun, Yan, Shang, Junliang, Li, Feng, Guan, Boxin, Liu, Jin-Xing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140669/ https://www.ncbi.nlm.nih.gov/pubmed/35627256 http://dx.doi.org/10.3390/genes13050871 |
Ejemplares similares
-
epiACO - a method for identifying epistasis based on ant Colony optimization algorithm
por: Sun, Yingxia, et al.
Publicado: (2017) -
Dynamic population artificial bee colony algorithm for multi-objective optimal power flow
por: Ding, Man, et al.
Publicado: (2017) -
Improved multi-objective artificial bee colony algorithm-based path planning for mobile robots
por: Cui, Qiuyu, et al.
Publicado: (2023) -
Multi-Objective artificial bee colony optimized hybrid deep belief network and XGBoost algorithm for heart disease prediction
por: Kalita, Kanak, et al.
Publicado: (2023) -
An Artificial Bee Colony Algorithm for Uncertain Portfolio Selection
por: Chen, Wei
Publicado: (2014)