Cargando…

Phytic Acid Treatment Inhibits Browning and Lignification to Promote the Quality of Fresh-Cut Apples during Storage

Browning and lignification often occur in fresh-cut apple processing, leading to quality deterioration and limiting the shelf life of products. In this study, 0.8% (v/v) phytic acid was used to improve the quality and shelf life of fresh-cut apples. From the results, the browning was inhibited by th...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Ting, Yao, Jia, Duan, Yuquan, Zhong, Yaoguang, Zhao, Yaoyao, Lin, Qiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140707/
https://www.ncbi.nlm.nih.gov/pubmed/35627040
http://dx.doi.org/10.3390/foods11101470
Descripción
Sumario:Browning and lignification often occur in fresh-cut apple processing, leading to quality deterioration and limiting the shelf life of products. In this study, 0.8% (v/v) phytic acid was used to improve the quality and shelf life of fresh-cut apples. From the results, the browning was inhibited by the phytic acid treatment and the browning index (BI) of the control fruit was 1.62 times that of phytic acid treatment at 2 d of storage. The lignin content in phytic acid-treated fruit significantly decreased at 2, 4, and 6 d of storage compared to the control. Phytic acid treatment also reduced H(2)O(2) and malonaldehyde (MDA) contents, which may indicate lighter membrane damage to apples. Compared with the control, the polyphenol oxidase (PPO) and peroxidase (POD) activities decreased while superoxide dismutase (SOD) and catalase (CAT) activities increased in phytic acid-treated fruit. Consistent with the lignin content, the activities of phenylpropane metabolism-related enzymes phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate: CoA ligase (4CL) were inhibited by phytic acid treatment. In conclusion, phytic acid alleviated the browning and lignification of fresh-cut apples by reducing PPO and POD activities, maintaining cell membrane integrity, and inhibiting phenylpropane metabolism.