Cargando…
Weighted Similarity and Core-User-Core-Item Based Recommendations
In traditional recommendation algorithms, the users and/or the items with the same rating scores are equally treated. In real world, however, a user may prefer some items to other items and some users are more loyal to a certain item than other users. In this paper, therefore, we propose a weighted...
Autores principales: | Zhang, Zhuangzhuang, Dong, Yunquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140734/ https://www.ncbi.nlm.nih.gov/pubmed/35626494 http://dx.doi.org/10.3390/e24050609 |
Ejemplares similares
-
Users' Rating Predictions Using Collaborating Filtering Based on Users and Items Similarity Measures
por: Nudrat, Sofia, et al.
Publicado: (2022) -
Attentional factorization machine with review-based user–item interaction for recommendation
por: Li, Zheng, et al.
Publicado: (2023) -
Matching Users’ Preference under Target Revenue Constraints in Data Recommendation Systems
por: Liu, Shanyun, et al.
Publicado: (2019) -
Uncovering the information core in recommender systems
por: Zeng, Wei, et al.
Publicado: (2014) -
A Deep Ranking Weighted Multihashing Recommender System for Item Recommendation
por: Kumar, Suresh, et al.
Publicado: (2022)