Cargando…
Identification of Key Prognostic Genes of Triple Negative Breast Cancer by LASSO-Based Machine Learning and Bioinformatics Analysis
Improved insight into the molecular mechanisms of triple negative breast cancer (TNBC) is required to predict prognosis and develop a new therapeutic strategy for targeted genes. The aim of this study is to identify key genes which may affect the prognosis of TNBC patients by bioinformatic analysis....
Autores principales: | Chen, De-Lun, Cai, Jia-Hua, Wang, Charles C. N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140789/ https://www.ncbi.nlm.nih.gov/pubmed/35627287 http://dx.doi.org/10.3390/genes13050902 |
Ejemplares similares
-
LASSO and Bioinformatics Analysis in the Identification of Key Genes for Prognostic Genes of Gynecologic Cancer
por: Yu, Shao-Hua, et al.
Publicado: (2021) -
Identification of Key Genes and Pathways in Triple-Negative Breast Cancer by Integrated Bioinformatics Analysis
por: Dong, Pengzhi, et al.
Publicado: (2018) -
Identification of key immune genes of osteoporosis based on bioinformatics and machine learning
por: Hao, Song, et al.
Publicado: (2023) -
Identification of potential oncogenes in triple-negative breast cancer based on bioinformatics analyses
por: Xiao, Xiao, et al.
Publicado: (2021) -
Identification of GSN and LAMC2 as Key Prognostic Genes of Bladder Cancer by Integrated Bioinformatics Analysis
por: Yang, Jia-Lian, et al.
Publicado: (2020)