Cargando…

Development and Characterization of Chromosome Segment Substitution Lines Derived from Oryza rufipogon in the Background of the Oryza sativa indica Restorer Line R974

Dongxiang wild rice (DXWR) (O. rufipogon Griff.), which has the northernmost worldwide distribution of a wild rice species, is a valuable genetic resource with respect to improving stress tolerance in cultivated rice (Oryza sativa L.). In the three-line hybrid rice breeding system, restorer lines pl...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Gumu, Hu, Biaolin, Zhou, Yi, Yang, Wanling, Zhao, Minmin, Xie, Jiankun, Zhang, Fantao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140843/
https://www.ncbi.nlm.nih.gov/pubmed/35627119
http://dx.doi.org/10.3390/genes13050735
Descripción
Sumario:Dongxiang wild rice (DXWR) (O. rufipogon Griff.), which has the northernmost worldwide distribution of a wild rice species, is a valuable genetic resource with respect to improving stress tolerance in cultivated rice (Oryza sativa L.). In the three-line hybrid rice breeding system, restorer lines play important roles in enhancing the tolerance of hybrid rice. However, restorer lines have yet to be used as a genomic background for development of substitution lines carrying DXWR chromosome segments. We developed a set of 84 chromosome segment substitution lines (CSSLs) from a donor parent DXWR × recurrent parent restorer line R974 (Oryza sativa indica) cross. On average, each CSSL carried 6.27 introgressed homozygous segments, with 93.37% total genome coverage. Using these CSSLs, we identified a single QTL, qDYST-1, associated with salt stress tolerance on chromosome 3. Furthermore, five CSSLs showing strong salt stress tolerance were subjected to whole-genome single-nucleotide polymorphism chip analyses, during which we detected a common substitution segment containing qDYST-1 in all five CSSLs, thereby implying the validity and efficacy of qDYST-1. These novel CSSLs could make a significant contribution to detecting valuable DXWR QTLs, and provide important germplasm resources for breeding novel restorer lines for use in hybrid rice breeding systems.