Cargando…
Random RotBoost: An Ensemble Classification Method Based on Rotation Forest and AdaBoost in Random Subsets and Its Application to Clinical Decision Support
In the era of bathing in big data, it is common to see enormous amounts of data generated daily. As for the medical industry, not only could we collect a large amount of data, but also see each data set with a great number of features. When the number of features is ramping up, a common dilemma is a...
Autores principales: | Lee, Shin-Jye, Tseng, Ching-Hsun, Yang, Hui-Yu, Jin, Xin, Jiang, Qian, Pu, Bin, Hu, Wei-Huan, Liu, Duen-Ren, Huang, Yang, Zhao, Na |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140905/ https://www.ncbi.nlm.nih.gov/pubmed/35626502 http://dx.doi.org/10.3390/e24050617 |
Ejemplares similares
-
AdaBoost based Random forest model for Emotion classification of Facial images
por: Gubbala, Kumari, et al.
Publicado: (2023) -
An Intelligent Heartbeat Classification System Based on Attributable Features with AdaBoost+Random Forest Algorithm
por: Li, Runchuan, et al.
Publicado: (2021) -
Ada-WHIPS: explaining AdaBoost classification with applications in the health sciences
por: Hatwell, Julian, et al.
Publicado: (2020) -
Chagas Parasite Detection in Blood Images Using AdaBoost
por: Uc-Cetina, Víctor, et al.
Publicado: (2015) -
Brillouin Frequency Shift Extraction Based on AdaBoost Algorithm
por: Zheng, Huan, et al.
Publicado: (2022)