Cargando…
Synergistic Activity of Ketoconazole and Miconazole with Prochloraz in Inducing Oxidative Stress, GSH Depletion, Mitochondrial Dysfunction, and Apoptosis in Mouse Sertoli TM4 Cells
Triazole and imidazole fungicides represent an emerging class of pollutants with endocrine-disrupting properties. Concerning mammalian reproduction, a possible causative role of antifungal compounds in inducing toxicity has been reported, although currently, there is little evidence about potential...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140920/ https://www.ncbi.nlm.nih.gov/pubmed/35628239 http://dx.doi.org/10.3390/ijms23105429 |
_version_ | 1784715217741021184 |
---|---|
author | Petricca, Sabrina Celenza, Giuseppe Luzi, Carla Cinque, Benedetta Lizzi, Anna Rita Franceschini, Nicola Festuccia, Claudio Iorio, Roberto |
author_facet | Petricca, Sabrina Celenza, Giuseppe Luzi, Carla Cinque, Benedetta Lizzi, Anna Rita Franceschini, Nicola Festuccia, Claudio Iorio, Roberto |
author_sort | Petricca, Sabrina |
collection | PubMed |
description | Triazole and imidazole fungicides represent an emerging class of pollutants with endocrine-disrupting properties. Concerning mammalian reproduction, a possible causative role of antifungal compounds in inducing toxicity has been reported, although currently, there is little evidence about potential cooperative toxic effects. Toxicant-induced oxidative stress (OS) may be an important mechanism potentially involved in male reproductive dysfunction. Thus, to clarify the molecular mechanism underlying the effects of azoles on male reproduction, the individual and combined potential of fluconazole (FCZ), prochloraz (PCZ), miconazole (MCZ), and ketoconazole (KCZ) in triggering in vitro toxicity, redox status alterations, and OS in mouse TM4 Sertoli cells (SCs) was investigated. In the present study, we demonstrate that KCZ and MCZ, alone or in synergistic combination with PCZ, strongly impair SC functions, and this event is, at least in part, ascribed to OS. In particular, azoles-induced cytotoxicity is associated with growth inhibitory effects, G0/G1 cell cycle arrest, mitochondrial dysfunction, reactive oxygen species (ROS) generation, imbalance of the superoxide dismutase (SOD) specific activity, glutathione (GSH) depletion, and apoptosis. N-acetylcysteine (NAC) inhibits ROS accumulation and rescues SCs from azole-induced apoptosis. PCZ alone exhibits only cytostatic and pro-oxidant properties, while FCZ, either individually or in combination, shows no cytotoxic effects up to 320 µM. |
format | Online Article Text |
id | pubmed-9140920 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91409202022-05-28 Synergistic Activity of Ketoconazole and Miconazole with Prochloraz in Inducing Oxidative Stress, GSH Depletion, Mitochondrial Dysfunction, and Apoptosis in Mouse Sertoli TM4 Cells Petricca, Sabrina Celenza, Giuseppe Luzi, Carla Cinque, Benedetta Lizzi, Anna Rita Franceschini, Nicola Festuccia, Claudio Iorio, Roberto Int J Mol Sci Article Triazole and imidazole fungicides represent an emerging class of pollutants with endocrine-disrupting properties. Concerning mammalian reproduction, a possible causative role of antifungal compounds in inducing toxicity has been reported, although currently, there is little evidence about potential cooperative toxic effects. Toxicant-induced oxidative stress (OS) may be an important mechanism potentially involved in male reproductive dysfunction. Thus, to clarify the molecular mechanism underlying the effects of azoles on male reproduction, the individual and combined potential of fluconazole (FCZ), prochloraz (PCZ), miconazole (MCZ), and ketoconazole (KCZ) in triggering in vitro toxicity, redox status alterations, and OS in mouse TM4 Sertoli cells (SCs) was investigated. In the present study, we demonstrate that KCZ and MCZ, alone or in synergistic combination with PCZ, strongly impair SC functions, and this event is, at least in part, ascribed to OS. In particular, azoles-induced cytotoxicity is associated with growth inhibitory effects, G0/G1 cell cycle arrest, mitochondrial dysfunction, reactive oxygen species (ROS) generation, imbalance of the superoxide dismutase (SOD) specific activity, glutathione (GSH) depletion, and apoptosis. N-acetylcysteine (NAC) inhibits ROS accumulation and rescues SCs from azole-induced apoptosis. PCZ alone exhibits only cytostatic and pro-oxidant properties, while FCZ, either individually or in combination, shows no cytotoxic effects up to 320 µM. MDPI 2022-05-12 /pmc/articles/PMC9140920/ /pubmed/35628239 http://dx.doi.org/10.3390/ijms23105429 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Petricca, Sabrina Celenza, Giuseppe Luzi, Carla Cinque, Benedetta Lizzi, Anna Rita Franceschini, Nicola Festuccia, Claudio Iorio, Roberto Synergistic Activity of Ketoconazole and Miconazole with Prochloraz in Inducing Oxidative Stress, GSH Depletion, Mitochondrial Dysfunction, and Apoptosis in Mouse Sertoli TM4 Cells |
title | Synergistic Activity of Ketoconazole and Miconazole with Prochloraz in Inducing Oxidative Stress, GSH Depletion, Mitochondrial Dysfunction, and Apoptosis in Mouse Sertoli TM4 Cells |
title_full | Synergistic Activity of Ketoconazole and Miconazole with Prochloraz in Inducing Oxidative Stress, GSH Depletion, Mitochondrial Dysfunction, and Apoptosis in Mouse Sertoli TM4 Cells |
title_fullStr | Synergistic Activity of Ketoconazole and Miconazole with Prochloraz in Inducing Oxidative Stress, GSH Depletion, Mitochondrial Dysfunction, and Apoptosis in Mouse Sertoli TM4 Cells |
title_full_unstemmed | Synergistic Activity of Ketoconazole and Miconazole with Prochloraz in Inducing Oxidative Stress, GSH Depletion, Mitochondrial Dysfunction, and Apoptosis in Mouse Sertoli TM4 Cells |
title_short | Synergistic Activity of Ketoconazole and Miconazole with Prochloraz in Inducing Oxidative Stress, GSH Depletion, Mitochondrial Dysfunction, and Apoptosis in Mouse Sertoli TM4 Cells |
title_sort | synergistic activity of ketoconazole and miconazole with prochloraz in inducing oxidative stress, gsh depletion, mitochondrial dysfunction, and apoptosis in mouse sertoli tm4 cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9140920/ https://www.ncbi.nlm.nih.gov/pubmed/35628239 http://dx.doi.org/10.3390/ijms23105429 |
work_keys_str_mv | AT petriccasabrina synergisticactivityofketoconazoleandmiconazolewithprochlorazininducingoxidativestressgshdepletionmitochondrialdysfunctionandapoptosisinmousesertolitm4cells AT celenzagiuseppe synergisticactivityofketoconazoleandmiconazolewithprochlorazininducingoxidativestressgshdepletionmitochondrialdysfunctionandapoptosisinmousesertolitm4cells AT luzicarla synergisticactivityofketoconazoleandmiconazolewithprochlorazininducingoxidativestressgshdepletionmitochondrialdysfunctionandapoptosisinmousesertolitm4cells AT cinquebenedetta synergisticactivityofketoconazoleandmiconazolewithprochlorazininducingoxidativestressgshdepletionmitochondrialdysfunctionandapoptosisinmousesertolitm4cells AT lizziannarita synergisticactivityofketoconazoleandmiconazolewithprochlorazininducingoxidativestressgshdepletionmitochondrialdysfunctionandapoptosisinmousesertolitm4cells AT franceschininicola synergisticactivityofketoconazoleandmiconazolewithprochlorazininducingoxidativestressgshdepletionmitochondrialdysfunctionandapoptosisinmousesertolitm4cells AT festucciaclaudio synergisticactivityofketoconazoleandmiconazolewithprochlorazininducingoxidativestressgshdepletionmitochondrialdysfunctionandapoptosisinmousesertolitm4cells AT iorioroberto synergisticactivityofketoconazoleandmiconazolewithprochlorazininducingoxidativestressgshdepletionmitochondrialdysfunctionandapoptosisinmousesertolitm4cells |