Cargando…

A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics

The increased incidence and the significant health burden associated with Parkinson’s disease (PD) have stimulated substantial research efforts towards the identification of effective treatments and diagnostic procedures. Despite technological advancements, a cure is still not available and PD is of...

Descripción completa

Detalles Bibliográficos
Autores principales: Pantaleo, Ester, Monaco, Alfonso, Amoroso, Nicola, Lombardi, Angela, Bellantuono, Loredana, Urso, Daniele, Lo Giudice, Claudio, Picardi, Ernesto, Tafuri, Benedetta, Nigro, Salvatore, Pesole, Graziano, Tangaro, Sabina, Logroscino, Giancarlo, Bellotti, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141063/
https://www.ncbi.nlm.nih.gov/pubmed/35627112
http://dx.doi.org/10.3390/genes13050727
_version_ 1784715253462859776
author Pantaleo, Ester
Monaco, Alfonso
Amoroso, Nicola
Lombardi, Angela
Bellantuono, Loredana
Urso, Daniele
Lo Giudice, Claudio
Picardi, Ernesto
Tafuri, Benedetta
Nigro, Salvatore
Pesole, Graziano
Tangaro, Sabina
Logroscino, Giancarlo
Bellotti, Roberto
author_facet Pantaleo, Ester
Monaco, Alfonso
Amoroso, Nicola
Lombardi, Angela
Bellantuono, Loredana
Urso, Daniele
Lo Giudice, Claudio
Picardi, Ernesto
Tafuri, Benedetta
Nigro, Salvatore
Pesole, Graziano
Tangaro, Sabina
Logroscino, Giancarlo
Bellotti, Roberto
author_sort Pantaleo, Ester
collection PubMed
description The increased incidence and the significant health burden associated with Parkinson’s disease (PD) have stimulated substantial research efforts towards the identification of effective treatments and diagnostic procedures. Despite technological advancements, a cure is still not available and PD is often diagnosed a long time after onset when irreversible damage has already occurred. Blood transcriptomics represents a potentially disruptive technology for the early diagnosis of PD. We used transcriptome data from the PPMI study, a large cohort study with early PD subjects and age matched controls (HC), to perform the classification of PD vs. HC in around 550 samples. Using a nested feature selection procedure based on Random Forests and XGBoost we reached an AUC of 72% and found 493 candidate genes. We further discussed the importance of the selected genes through a functional analysis based on GOs and KEGG pathways.
format Online
Article
Text
id pubmed-9141063
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91410632022-05-28 A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics Pantaleo, Ester Monaco, Alfonso Amoroso, Nicola Lombardi, Angela Bellantuono, Loredana Urso, Daniele Lo Giudice, Claudio Picardi, Ernesto Tafuri, Benedetta Nigro, Salvatore Pesole, Graziano Tangaro, Sabina Logroscino, Giancarlo Bellotti, Roberto Genes (Basel) Article The increased incidence and the significant health burden associated with Parkinson’s disease (PD) have stimulated substantial research efforts towards the identification of effective treatments and diagnostic procedures. Despite technological advancements, a cure is still not available and PD is often diagnosed a long time after onset when irreversible damage has already occurred. Blood transcriptomics represents a potentially disruptive technology for the early diagnosis of PD. We used transcriptome data from the PPMI study, a large cohort study with early PD subjects and age matched controls (HC), to perform the classification of PD vs. HC in around 550 samples. Using a nested feature selection procedure based on Random Forests and XGBoost we reached an AUC of 72% and found 493 candidate genes. We further discussed the importance of the selected genes through a functional analysis based on GOs and KEGG pathways. MDPI 2022-04-21 /pmc/articles/PMC9141063/ /pubmed/35627112 http://dx.doi.org/10.3390/genes13050727 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pantaleo, Ester
Monaco, Alfonso
Amoroso, Nicola
Lombardi, Angela
Bellantuono, Loredana
Urso, Daniele
Lo Giudice, Claudio
Picardi, Ernesto
Tafuri, Benedetta
Nigro, Salvatore
Pesole, Graziano
Tangaro, Sabina
Logroscino, Giancarlo
Bellotti, Roberto
A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics
title A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics
title_full A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics
title_fullStr A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics
title_full_unstemmed A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics
title_short A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics
title_sort machine learning approach to parkinson’s disease blood transcriptomics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141063/
https://www.ncbi.nlm.nih.gov/pubmed/35627112
http://dx.doi.org/10.3390/genes13050727
work_keys_str_mv AT pantaleoester amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT monacoalfonso amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT amorosonicola amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT lombardiangela amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT bellantuonoloredana amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT ursodaniele amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT logiudiceclaudio amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT picardiernesto amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT tafuribenedetta amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT nigrosalvatore amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT pesolegraziano amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT tangarosabina amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT logroscinogiancarlo amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT bellottiroberto amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT pantaleoester machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT monacoalfonso machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT amorosonicola machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT lombardiangela machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT bellantuonoloredana machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT ursodaniele machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT logiudiceclaudio machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT picardiernesto machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT tafuribenedetta machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT nigrosalvatore machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT pesolegraziano machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT tangarosabina machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT logroscinogiancarlo machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics
AT bellottiroberto machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics