Cargando…
A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics
The increased incidence and the significant health burden associated with Parkinson’s disease (PD) have stimulated substantial research efforts towards the identification of effective treatments and diagnostic procedures. Despite technological advancements, a cure is still not available and PD is of...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141063/ https://www.ncbi.nlm.nih.gov/pubmed/35627112 http://dx.doi.org/10.3390/genes13050727 |
_version_ | 1784715253462859776 |
---|---|
author | Pantaleo, Ester Monaco, Alfonso Amoroso, Nicola Lombardi, Angela Bellantuono, Loredana Urso, Daniele Lo Giudice, Claudio Picardi, Ernesto Tafuri, Benedetta Nigro, Salvatore Pesole, Graziano Tangaro, Sabina Logroscino, Giancarlo Bellotti, Roberto |
author_facet | Pantaleo, Ester Monaco, Alfonso Amoroso, Nicola Lombardi, Angela Bellantuono, Loredana Urso, Daniele Lo Giudice, Claudio Picardi, Ernesto Tafuri, Benedetta Nigro, Salvatore Pesole, Graziano Tangaro, Sabina Logroscino, Giancarlo Bellotti, Roberto |
author_sort | Pantaleo, Ester |
collection | PubMed |
description | The increased incidence and the significant health burden associated with Parkinson’s disease (PD) have stimulated substantial research efforts towards the identification of effective treatments and diagnostic procedures. Despite technological advancements, a cure is still not available and PD is often diagnosed a long time after onset when irreversible damage has already occurred. Blood transcriptomics represents a potentially disruptive technology for the early diagnosis of PD. We used transcriptome data from the PPMI study, a large cohort study with early PD subjects and age matched controls (HC), to perform the classification of PD vs. HC in around 550 samples. Using a nested feature selection procedure based on Random Forests and XGBoost we reached an AUC of 72% and found 493 candidate genes. We further discussed the importance of the selected genes through a functional analysis based on GOs and KEGG pathways. |
format | Online Article Text |
id | pubmed-9141063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91410632022-05-28 A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics Pantaleo, Ester Monaco, Alfonso Amoroso, Nicola Lombardi, Angela Bellantuono, Loredana Urso, Daniele Lo Giudice, Claudio Picardi, Ernesto Tafuri, Benedetta Nigro, Salvatore Pesole, Graziano Tangaro, Sabina Logroscino, Giancarlo Bellotti, Roberto Genes (Basel) Article The increased incidence and the significant health burden associated with Parkinson’s disease (PD) have stimulated substantial research efforts towards the identification of effective treatments and diagnostic procedures. Despite technological advancements, a cure is still not available and PD is often diagnosed a long time after onset when irreversible damage has already occurred. Blood transcriptomics represents a potentially disruptive technology for the early diagnosis of PD. We used transcriptome data from the PPMI study, a large cohort study with early PD subjects and age matched controls (HC), to perform the classification of PD vs. HC in around 550 samples. Using a nested feature selection procedure based on Random Forests and XGBoost we reached an AUC of 72% and found 493 candidate genes. We further discussed the importance of the selected genes through a functional analysis based on GOs and KEGG pathways. MDPI 2022-04-21 /pmc/articles/PMC9141063/ /pubmed/35627112 http://dx.doi.org/10.3390/genes13050727 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pantaleo, Ester Monaco, Alfonso Amoroso, Nicola Lombardi, Angela Bellantuono, Loredana Urso, Daniele Lo Giudice, Claudio Picardi, Ernesto Tafuri, Benedetta Nigro, Salvatore Pesole, Graziano Tangaro, Sabina Logroscino, Giancarlo Bellotti, Roberto A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics |
title | A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics |
title_full | A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics |
title_fullStr | A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics |
title_full_unstemmed | A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics |
title_short | A Machine Learning Approach to Parkinson’s Disease Blood Transcriptomics |
title_sort | machine learning approach to parkinson’s disease blood transcriptomics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141063/ https://www.ncbi.nlm.nih.gov/pubmed/35627112 http://dx.doi.org/10.3390/genes13050727 |
work_keys_str_mv | AT pantaleoester amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT monacoalfonso amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT amorosonicola amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT lombardiangela amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT bellantuonoloredana amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT ursodaniele amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT logiudiceclaudio amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT picardiernesto amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT tafuribenedetta amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT nigrosalvatore amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT pesolegraziano amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT tangarosabina amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT logroscinogiancarlo amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT bellottiroberto amachinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT pantaleoester machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT monacoalfonso machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT amorosonicola machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT lombardiangela machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT bellantuonoloredana machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT ursodaniele machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT logiudiceclaudio machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT picardiernesto machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT tafuribenedetta machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT nigrosalvatore machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT pesolegraziano machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT tangarosabina machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT logroscinogiancarlo machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics AT bellottiroberto machinelearningapproachtoparkinsonsdiseasebloodtranscriptomics |