Cargando…
Neural Networks for Financial Time Series Forecasting
Financial and economic time series forecasting has never been an easy task due to its sensibility to political, economic and social factors. For this reason, people who invest in financial markets and currency exchange are usually looking for robust models that can ensure them to maximize their prof...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141105/ https://www.ncbi.nlm.nih.gov/pubmed/35626542 http://dx.doi.org/10.3390/e24050657 |
_version_ | 1784715262811963392 |
---|---|
author | Sako, Kady Mpinda, Berthine Nyunga Rodrigues, Paulo Canas |
author_facet | Sako, Kady Mpinda, Berthine Nyunga Rodrigues, Paulo Canas |
author_sort | Sako, Kady |
collection | PubMed |
description | Financial and economic time series forecasting has never been an easy task due to its sensibility to political, economic and social factors. For this reason, people who invest in financial markets and currency exchange are usually looking for robust models that can ensure them to maximize their profile and minimize their losses as much as possible. Fortunately, recently, various studies have speculated that a special type of Artificial Neural Networks (ANNs) called Recurrent Neural Networks (RNNs) could improve the predictive accuracy of the behavior of the financial data over time. This paper aims to forecast: (i) the closing price of eight stock market indexes; and (ii) the closing price of six currency exchange rates related to the USD, using the RNNs model and its variants: the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU). The results show that the GRU gives the overall best results, especially for the univariate out-of-sample forecasting for the currency exchange rates and multivariate out-of-sample forecasting for the stock market indexes. |
format | Online Article Text |
id | pubmed-9141105 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91411052022-05-28 Neural Networks for Financial Time Series Forecasting Sako, Kady Mpinda, Berthine Nyunga Rodrigues, Paulo Canas Entropy (Basel) Article Financial and economic time series forecasting has never been an easy task due to its sensibility to political, economic and social factors. For this reason, people who invest in financial markets and currency exchange are usually looking for robust models that can ensure them to maximize their profile and minimize their losses as much as possible. Fortunately, recently, various studies have speculated that a special type of Artificial Neural Networks (ANNs) called Recurrent Neural Networks (RNNs) could improve the predictive accuracy of the behavior of the financial data over time. This paper aims to forecast: (i) the closing price of eight stock market indexes; and (ii) the closing price of six currency exchange rates related to the USD, using the RNNs model and its variants: the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU). The results show that the GRU gives the overall best results, especially for the univariate out-of-sample forecasting for the currency exchange rates and multivariate out-of-sample forecasting for the stock market indexes. MDPI 2022-05-07 /pmc/articles/PMC9141105/ /pubmed/35626542 http://dx.doi.org/10.3390/e24050657 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sako, Kady Mpinda, Berthine Nyunga Rodrigues, Paulo Canas Neural Networks for Financial Time Series Forecasting |
title | Neural Networks for Financial Time Series Forecasting |
title_full | Neural Networks for Financial Time Series Forecasting |
title_fullStr | Neural Networks for Financial Time Series Forecasting |
title_full_unstemmed | Neural Networks for Financial Time Series Forecasting |
title_short | Neural Networks for Financial Time Series Forecasting |
title_sort | neural networks for financial time series forecasting |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141105/ https://www.ncbi.nlm.nih.gov/pubmed/35626542 http://dx.doi.org/10.3390/e24050657 |
work_keys_str_mv | AT sakokady neuralnetworksforfinancialtimeseriesforecasting AT mpindaberthinenyunga neuralnetworksforfinancialtimeseriesforecasting AT rodriguespaulocanas neuralnetworksforfinancialtimeseriesforecasting |