Cargando…
Cluster-Based Improved Isolation Forest
Outlier detection is an important research direction in the field of data mining. Aiming at the problem of unstable detection results and low efficiency caused by randomly dividing features of the data set in the Isolation Forest algorithm in outlier detection, an algorithm CIIF (Cluster-based Impro...
Autores principales: | Shao, Chen, Du, Xusheng, Yu, Jiong, Chen, Jiaying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141139/ https://www.ncbi.nlm.nih.gov/pubmed/35626495 http://dx.doi.org/10.3390/e24050611 |
Ejemplares similares
-
Task’s Choice: Pruning-Based Feature Sharing (PBFS) for Multi-Task Learning
por: Chen, Ying, et al.
Publicado: (2022) -
Fluctuation-based outlier detection
por: Du, Xusheng, et al.
Publicado: (2023) -
An improved X-means and isolation forest based methodology for network traffic anomaly detection
por: Feng, Yifan, et al.
Publicado: (2022) -
Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm
por: Yang, Dexian, et al.
Publicado: (2022) -
Cluster ensemble based on Random Forests for genetic data
por: Alhusain, Luluah, et al.
Publicado: (2017)