Cargando…
Multi-Classifier Fusion Based on MI–SFFS for Cross-Subject Emotion Recognition
With the widespread use of emotion recognition, cross-subject emotion recognition based on EEG signals has become a hot topic in affective computing. Electroencephalography (EEG) can be used to detect the brain’s electrical activity associated with different emotions. The aim of this research is to...
Autores principales: | Yang, Haihui, Huang, Shiguo, Guo, Shengwei, Sun, Guobing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141183/ https://www.ncbi.nlm.nih.gov/pubmed/35626587 http://dx.doi.org/10.3390/e24050705 |
Ejemplares similares
-
Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features
por: Yang, Fu, et al.
Publicado: (2019) -
Manifold Feature Fusion with Dynamical Feature Selection for Cross-Subject Emotion Recognition
por: Hua, Yue, et al.
Publicado: (2021) -
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023) -
Emotional Speech Recognition Based on the Committee of Classifiers
por: Kamińska, Dorota
Publicado: (2019) -
Semi-Supervised Cross-Subject Emotion Recognition Based on Stacked Denoising Autoencoder Architecture Using a Fusion of Multi-Modal Physiological Signals
por: Luo, Junhai, et al.
Publicado: (2022)