Cargando…

LncR-133a Suppresses Myoblast Differentiation by Sponging miR-133a-3p to Activate the FGFR1/ERK1/2 Signaling Pathway in Goats

Long noncoding RNAs (lncRNAs) are involved in a variety of biological processes and illnesses. While a considerable number of lncRNAs have been discovered in skeletal muscle to far, their role and underlying processes during myogenesis remain mostly unclear. In this study, we described a new functio...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhan, Siyuan, Zhang, Yang, Yang, Cuiting, Li, Dandan, Zhong, Tao, Wang, Linjie, Li, Li, Zhang, Hongping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141198/
https://www.ncbi.nlm.nih.gov/pubmed/35627202
http://dx.doi.org/10.3390/genes13050818
_version_ 1784715286290628608
author Zhan, Siyuan
Zhang, Yang
Yang, Cuiting
Li, Dandan
Zhong, Tao
Wang, Linjie
Li, Li
Zhang, Hongping
author_facet Zhan, Siyuan
Zhang, Yang
Yang, Cuiting
Li, Dandan
Zhong, Tao
Wang, Linjie
Li, Li
Zhang, Hongping
author_sort Zhan, Siyuan
collection PubMed
description Long noncoding RNAs (lncRNAs) are involved in a variety of biological processes and illnesses. While a considerable number of lncRNAs have been discovered in skeletal muscle to far, their role and underlying processes during myogenesis remain mostly unclear. In this study, we described a new functional lncRNA named lncR-133a. Gene overexpression and interference studies in goat skeletal muscle satellite cells (MuSCs) were used to establish its function. The molecular mechanism by which lncR-133a governs muscle differentiation was elucidated primarily using quantitative real-time PCR (qRT-PCR), Western blotting, dual-luciferase activity assays, RNA immunoprecipitation, biotin-labeled probe, and RNA fluorescence in situ hybridization analyses. LncR-133a was found to be substantially expressed in longissimus thoracis et lumborum muscle, and its expression levels changed during MuSC differentiation in goats. We validated that lncR-133a suppresses MuSC differentiation in vitro. Dual-luciferase reporter screening, Argonaute 2 (AGO2) RNA immunoprecipitation assays, biotin-labeled lncR-133a capture, and fluorescence in situ hybridization showed that lncR-133a interacted with miR-133a-3p. Additionally, miR-133a-3p facilitated MuSC differentiation, but lncR-133a reversed this effect. The luciferase reporter assay and functional analyses established that miR-133a-3p directly targets fibroblast growth factor receptor 1 (FGFR1). Moreover, lncR-133a directly reduced miR-133a-3p’s capacity to suppress FGFR1 expression, and positively regulated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In summary, our results suggested that lncR-133a suppresses goat muscle differentiation by targeting miR-133a-3p and activating FGFR1/ERK1/2 signaling pathway.
format Online
Article
Text
id pubmed-9141198
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91411982022-05-28 LncR-133a Suppresses Myoblast Differentiation by Sponging miR-133a-3p to Activate the FGFR1/ERK1/2 Signaling Pathway in Goats Zhan, Siyuan Zhang, Yang Yang, Cuiting Li, Dandan Zhong, Tao Wang, Linjie Li, Li Zhang, Hongping Genes (Basel) Article Long noncoding RNAs (lncRNAs) are involved in a variety of biological processes and illnesses. While a considerable number of lncRNAs have been discovered in skeletal muscle to far, their role and underlying processes during myogenesis remain mostly unclear. In this study, we described a new functional lncRNA named lncR-133a. Gene overexpression and interference studies in goat skeletal muscle satellite cells (MuSCs) were used to establish its function. The molecular mechanism by which lncR-133a governs muscle differentiation was elucidated primarily using quantitative real-time PCR (qRT-PCR), Western blotting, dual-luciferase activity assays, RNA immunoprecipitation, biotin-labeled probe, and RNA fluorescence in situ hybridization analyses. LncR-133a was found to be substantially expressed in longissimus thoracis et lumborum muscle, and its expression levels changed during MuSC differentiation in goats. We validated that lncR-133a suppresses MuSC differentiation in vitro. Dual-luciferase reporter screening, Argonaute 2 (AGO2) RNA immunoprecipitation assays, biotin-labeled lncR-133a capture, and fluorescence in situ hybridization showed that lncR-133a interacted with miR-133a-3p. Additionally, miR-133a-3p facilitated MuSC differentiation, but lncR-133a reversed this effect. The luciferase reporter assay and functional analyses established that miR-133a-3p directly targets fibroblast growth factor receptor 1 (FGFR1). Moreover, lncR-133a directly reduced miR-133a-3p’s capacity to suppress FGFR1 expression, and positively regulated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In summary, our results suggested that lncR-133a suppresses goat muscle differentiation by targeting miR-133a-3p and activating FGFR1/ERK1/2 signaling pathway. MDPI 2022-05-03 /pmc/articles/PMC9141198/ /pubmed/35627202 http://dx.doi.org/10.3390/genes13050818 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhan, Siyuan
Zhang, Yang
Yang, Cuiting
Li, Dandan
Zhong, Tao
Wang, Linjie
Li, Li
Zhang, Hongping
LncR-133a Suppresses Myoblast Differentiation by Sponging miR-133a-3p to Activate the FGFR1/ERK1/2 Signaling Pathway in Goats
title LncR-133a Suppresses Myoblast Differentiation by Sponging miR-133a-3p to Activate the FGFR1/ERK1/2 Signaling Pathway in Goats
title_full LncR-133a Suppresses Myoblast Differentiation by Sponging miR-133a-3p to Activate the FGFR1/ERK1/2 Signaling Pathway in Goats
title_fullStr LncR-133a Suppresses Myoblast Differentiation by Sponging miR-133a-3p to Activate the FGFR1/ERK1/2 Signaling Pathway in Goats
title_full_unstemmed LncR-133a Suppresses Myoblast Differentiation by Sponging miR-133a-3p to Activate the FGFR1/ERK1/2 Signaling Pathway in Goats
title_short LncR-133a Suppresses Myoblast Differentiation by Sponging miR-133a-3p to Activate the FGFR1/ERK1/2 Signaling Pathway in Goats
title_sort lncr-133a suppresses myoblast differentiation by sponging mir-133a-3p to activate the fgfr1/erk1/2 signaling pathway in goats
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141198/
https://www.ncbi.nlm.nih.gov/pubmed/35627202
http://dx.doi.org/10.3390/genes13050818
work_keys_str_mv AT zhansiyuan lncr133asuppressesmyoblastdifferentiationbyspongingmir133a3ptoactivatethefgfr1erk12signalingpathwayingoats
AT zhangyang lncr133asuppressesmyoblastdifferentiationbyspongingmir133a3ptoactivatethefgfr1erk12signalingpathwayingoats
AT yangcuiting lncr133asuppressesmyoblastdifferentiationbyspongingmir133a3ptoactivatethefgfr1erk12signalingpathwayingoats
AT lidandan lncr133asuppressesmyoblastdifferentiationbyspongingmir133a3ptoactivatethefgfr1erk12signalingpathwayingoats
AT zhongtao lncr133asuppressesmyoblastdifferentiationbyspongingmir133a3ptoactivatethefgfr1erk12signalingpathwayingoats
AT wanglinjie lncr133asuppressesmyoblastdifferentiationbyspongingmir133a3ptoactivatethefgfr1erk12signalingpathwayingoats
AT lili lncr133asuppressesmyoblastdifferentiationbyspongingmir133a3ptoactivatethefgfr1erk12signalingpathwayingoats
AT zhanghongping lncr133asuppressesmyoblastdifferentiationbyspongingmir133a3ptoactivatethefgfr1erk12signalingpathwayingoats