Cargando…
Spatio-Temporal Characteristics of PM(2.5) Concentrations in China Based on Multiple Sources of Data and LUR-GBM during 2016–2021
Fine particulate matter (PM(2.5)) has a continuing impact on the environment, climate change and human health. In order to improve the accuracy of PM(2.5) estimation and obtain a continuous spatial distribution of PM(2.5) concentration, this paper proposes a LUR-GBM model based on land-use regressio...
Autores principales: | Dai, Hongbin, Huang, Guangqiu, Wang, Jingjing, Zeng, Huibin, Zhou, Fangyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141263/ https://www.ncbi.nlm.nih.gov/pubmed/35627828 http://dx.doi.org/10.3390/ijerph19106292 |
Ejemplares similares
-
An LUR/BME
Framework to Estimate PM(2.5) Explained
by on Road Mobile and Stationary
Sources
por: Reyes, Jeanette M., et al.
Publicado: (2014) -
Performance comparison of LUR and OK in PM(2.5) concentration mapping: a multidimensional perspective
por: Zou, Bin, et al.
Publicado: (2015) -
Spatio–Temporal Relationship and Evolvement of Socioeconomic Factors and PM(2.5) in China During 1998–2016
por: Yang, Yi, et al.
Publicado: (2019) -
Spatio-Temporal Variation of PM(2.5) Concentrations and Their Relationship with Geographic and Socioeconomic Factors in China
por: Lin, Gang, et al.
Publicado: (2013) -
Association of ambient PM(2.5) concentration with tuberculosis reactivation diseases—an integrated spatio-temporal analysis
por: Lau, Leonia Hiu Wan, et al.
Publicado: (2023)