Cargando…

Chemical Leaching from Tire Wear Particles with Various Treadwear Ratings

Physical friction between a tire and the road surface generates tire wear particles (TWPs), which are a source of microplastics and particulate matter. This study investigated the trends of chemical leaching from TWPs depending on the treadwear rating of the tire. A road simulator was used to produc...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeong, Yoonah, Lee, Seokhwan, Woo, Sang-Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141276/
https://www.ncbi.nlm.nih.gov/pubmed/35627543
http://dx.doi.org/10.3390/ijerph19106006
Descripción
Sumario:Physical friction between a tire and the road surface generates tire wear particles (TWPs), which are a source of microplastics and particulate matter. This study investigated the trends of chemical leaching from TWPs depending on the treadwear rating of the tire. A road simulator was used to produce TWPs from tires with various treadwear ratings. Liquid chromatography–tandem mass spectrometry was used to analyze the chemical leaching from TWPs, with a particular focus on benzothiazole and its derivative 2-hydroxy benzothiazole. However, chemical mapping via high-resolution tandem mass spectrometry detected another derivative: 2-mercaptobenzothiazole. The benzothiazole groups were observed to have different leaching tendencies, implying that using benzothiazole as a marker compound may lead to incorrect TWP quantitation. The results of this research also suggest that the ecotoxicological influence of TWPs can vary with the treadwear rating of a tire.