Cargando…
Effect of NaCl on the Rheological, Structural, and Gelling Properties of Walnut Protein Isolate-κ-Carrageenan Composite Gels
In this study, we discovered that a certain concentration of Na(+) (15 mM) significantly improved the bond strength (12.94 ± 0.93 MPa), thermal stability (72.68 °C), rheological properties, and textural attributes of walnut protein isolate (WNPI)-κ-carrageenan (KC) composite gel. Electrostatic force...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141317/ https://www.ncbi.nlm.nih.gov/pubmed/35621557 http://dx.doi.org/10.3390/gels8050259 |
Sumario: | In this study, we discovered that a certain concentration of Na(+) (15 mM) significantly improved the bond strength (12.94 ± 0.93 MPa), thermal stability (72.68 °C), rheological properties, and textural attributes of walnut protein isolate (WNPI)-κ-carrageenan (KC) composite gel. Electrostatic force, hydrophobic interaction, hydrogen bond, and disulfide bond were also significantly strengthened; the α-helix decreased, and the β-sheet increased in the secondary structure, indicating that the protein molecules in the gel system aggregated in an orderly manner, which led to a much denser and more uniform gel network as well as improved water-holding capacity. In this experimental research, we developed a new type of walnut protein gel that could provide technical support for the high-value utilization and quality control of walnut protein. |
---|