Cargando…
Adaptive Fixed-Time Neural Networks Control for Pure-Feedback Non-Affine Nonlinear Systems with State Constraints
A new fixed-time adaptive neural network control strategy is designed for pure-feedback non-affine nonlinear systems with state constraints according to the feedback signal of the error system. Based on the adaptive backstepping technology, the Lyapunov function is designed for each subsystem. The n...
Autores principales: | Li, Yang, Zhu, Quanmin, Zhang, Jianhua, Deng, Zhaopeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141358/ https://www.ncbi.nlm.nih.gov/pubmed/35626620 http://dx.doi.org/10.3390/e24050737 |
Ejemplares similares
-
Distributed adaptive fixed-time neural networks control for nonaffine nonlinear multiagent systems
por: Li, Yang, et al.
Publicado: (2022) -
Adaptive Fixed-Time Control of Strict-Feedback High-Order Nonlinear Systems
por: Li, Yang, et al.
Publicado: (2021) -
Adaptive Fixed-Time Neural Network Tracking Control of Nonlinear Interconnected Systems
por: Li, Yang, et al.
Publicado: (2021) -
Adaptive Resilient Neural Control of Uncertain Time-Delay Nonlinear CPSs with Full-State Constraints under Deception Attacks
por: Chen, Zhihao, et al.
Publicado: (2023) -
Non-Predictive Model-Free Control of Nonlinear Systems with Unknown Input Time Delay
por: Zhu, Quanmin, et al.
Publicado: (2023)