Cargando…
Robust Aggregation for Federated Learning by Minimum γ-Divergence Estimation
Federated learning is a framework for multiple devices or institutions, called local clients, to collaboratively train a global model without sharing their data. For federated learning with a central server, an aggregation algorithm integrates model information sent from local clients to update the...
Autores principales: | Li, Cen-Jhih, Huang, Pin-Han, Ma, Yi-Ting, Hung, Hung, Huang, Su-Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141408/ https://www.ncbi.nlm.nih.gov/pubmed/35626569 http://dx.doi.org/10.3390/e24050686 |
Ejemplares similares
-
Robust Minimum Divergence Estimation for the Multinomial Circular Logistic Regression Model
por: Castilla, Elena, et al.
Publicado: (2023) -
Robust Significance Analysis of Microarrays by Minimum β-Divergence Method
por: Shahjaman, Md., et al.
Publicado: (2017) -
Minimum Divergence Estimators, Maximum Likelihood and the Generalized Bootstrap
por: Broniatowski, Michel
Publicado: (2021) -
Minimum Penalized ϕ-Divergence Estimation under Model Misspecification
por: Alba-Fernández, M. Virtudes, et al.
Publicado: (2018) -
On Default Priors for Robust Bayesian Estimation with Divergences
por: Nakagawa, Tomoyuki, et al.
Publicado: (2020)