Cargando…
Semi-Supervised Cross-Subject Emotion Recognition Based on Stacked Denoising Autoencoder Architecture Using a Fusion of Multi-Modal Physiological Signals
In recent decades, emotion recognition has received considerable attention. As more enthusiasm has shifted to the physiological pattern, a wide range of elaborate physiological emotion data features come up and are combined with various classifying models to detect one’s emotional states. To circumv...
Autores principales: | Luo, Junhai, Tian, Yuxin, Yu, Hang, Chen, Yu, Wu, Man |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141449/ https://www.ncbi.nlm.nih.gov/pubmed/35626462 http://dx.doi.org/10.3390/e24050577 |
Ejemplares similares
-
Leveraging Wearable Sensors for Human Daily Activity Recognition with Stacked Denoising Autoencoders
por: Ni, Qin, et al.
Publicado: (2020) -
Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder
por: Li, Zexin, et al.
Publicado: (2020) -
A Human Activity Recognition Algorithm Based on Stacking Denoising Autoencoder and LightGBM
por: Gao, Xile, et al.
Publicado: (2019) -
A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks
por: Lai, Jie, et al.
Publicado: (2023) -
Marginalised Stacked Denoising Autoencoders for Robust Representation of Real-Time Multi-View Action Recognition
por: Gu, Feng, et al.
Publicado: (2015)