Cargando…
A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing
Known genetic variation, in conjunction with post-PCR melting curve analysis, can be leveraged to provide increased taxonomic detail for pathogen identification in commercial molecular diagnostic tests. Increased taxonomic detail may be used by clinicians and public health decision-makers to observe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141461/ https://www.ncbi.nlm.nih.gov/pubmed/35628251 http://dx.doi.org/10.3390/ijms23105441 |
_version_ | 1784715351864377344 |
---|---|
author | Galvin, Ben Jones, Jay Powell, Michaela Olin, Katherine Jones, Matthew Robbins, Thomas |
author_facet | Galvin, Ben Jones, Jay Powell, Michaela Olin, Katherine Jones, Matthew Robbins, Thomas |
author_sort | Galvin, Ben |
collection | PubMed |
description | Known genetic variation, in conjunction with post-PCR melting curve analysis, can be leveraged to provide increased taxonomic detail for pathogen identification in commercial molecular diagnostic tests. Increased taxonomic detail may be used by clinicians and public health decision-makers to observe circulation patterns, monitor for outbreaks, and inform testing practices. We propose a method for expanding the taxonomic resolution of PCR diagnostic systems by incorporating a priori knowledge of assay design and sequence information into a genotyping classification model. For multiplexed PCR systems, this framework is generalized to incorporate information from multiple assays to increase classification accuracy. An illustrative hierarchical classification model for human adenovirus (HAdV) species was developed and demonstrated ~95% cross-validated accuracy on a labeled dataset. The model was then applied to a near-real-time surveillance dataset in which deidentified adenovirus detected patient test data from 2018 through 2021 were classified into one of six adenovirus species. These results show a marked change in both the predicted prevalence for HAdV and the species makeup with the onset of the COVID-19 pandemic. HAdV-B decreased from a pre-pandemic predicted prevalence of up to 40% to less than 5% in 2021, while HAdV-A and HAdV-F species both increased in predicted prevalence. |
format | Online Article Text |
id | pubmed-9141461 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91414612022-05-28 A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing Galvin, Ben Jones, Jay Powell, Michaela Olin, Katherine Jones, Matthew Robbins, Thomas Int J Mol Sci Article Known genetic variation, in conjunction with post-PCR melting curve analysis, can be leveraged to provide increased taxonomic detail for pathogen identification in commercial molecular diagnostic tests. Increased taxonomic detail may be used by clinicians and public health decision-makers to observe circulation patterns, monitor for outbreaks, and inform testing practices. We propose a method for expanding the taxonomic resolution of PCR diagnostic systems by incorporating a priori knowledge of assay design and sequence information into a genotyping classification model. For multiplexed PCR systems, this framework is generalized to incorporate information from multiple assays to increase classification accuracy. An illustrative hierarchical classification model for human adenovirus (HAdV) species was developed and demonstrated ~95% cross-validated accuracy on a labeled dataset. The model was then applied to a near-real-time surveillance dataset in which deidentified adenovirus detected patient test data from 2018 through 2021 were classified into one of six adenovirus species. These results show a marked change in both the predicted prevalence for HAdV and the species makeup with the onset of the COVID-19 pandemic. HAdV-B decreased from a pre-pandemic predicted prevalence of up to 40% to less than 5% in 2021, while HAdV-A and HAdV-F species both increased in predicted prevalence. MDPI 2022-05-13 /pmc/articles/PMC9141461/ /pubmed/35628251 http://dx.doi.org/10.3390/ijms23105441 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Galvin, Ben Jones, Jay Powell, Michaela Olin, Katherine Jones, Matthew Robbins, Thomas A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing |
title | A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing |
title_full | A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing |
title_fullStr | A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing |
title_full_unstemmed | A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing |
title_short | A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing |
title_sort | hierarchical genotyping framework using dna melting temperatures applied to adenovirus species typing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141461/ https://www.ncbi.nlm.nih.gov/pubmed/35628251 http://dx.doi.org/10.3390/ijms23105441 |
work_keys_str_mv | AT galvinben ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping AT jonesjay ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping AT powellmichaela ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping AT olinkatherine ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping AT jonesmatthew ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping AT robbinsthomas ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping AT galvinben hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping AT jonesjay hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping AT powellmichaela hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping AT olinkatherine hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping AT jonesmatthew hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping AT robbinsthomas hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping |