Cargando…

A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing

Known genetic variation, in conjunction with post-PCR melting curve analysis, can be leveraged to provide increased taxonomic detail for pathogen identification in commercial molecular diagnostic tests. Increased taxonomic detail may be used by clinicians and public health decision-makers to observe...

Descripción completa

Detalles Bibliográficos
Autores principales: Galvin, Ben, Jones, Jay, Powell, Michaela, Olin, Katherine, Jones, Matthew, Robbins, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141461/
https://www.ncbi.nlm.nih.gov/pubmed/35628251
http://dx.doi.org/10.3390/ijms23105441
_version_ 1784715351864377344
author Galvin, Ben
Jones, Jay
Powell, Michaela
Olin, Katherine
Jones, Matthew
Robbins, Thomas
author_facet Galvin, Ben
Jones, Jay
Powell, Michaela
Olin, Katherine
Jones, Matthew
Robbins, Thomas
author_sort Galvin, Ben
collection PubMed
description Known genetic variation, in conjunction with post-PCR melting curve analysis, can be leveraged to provide increased taxonomic detail for pathogen identification in commercial molecular diagnostic tests. Increased taxonomic detail may be used by clinicians and public health decision-makers to observe circulation patterns, monitor for outbreaks, and inform testing practices. We propose a method for expanding the taxonomic resolution of PCR diagnostic systems by incorporating a priori knowledge of assay design and sequence information into a genotyping classification model. For multiplexed PCR systems, this framework is generalized to incorporate information from multiple assays to increase classification accuracy. An illustrative hierarchical classification model for human adenovirus (HAdV) species was developed and demonstrated ~95% cross-validated accuracy on a labeled dataset. The model was then applied to a near-real-time surveillance dataset in which deidentified adenovirus detected patient test data from 2018 through 2021 were classified into one of six adenovirus species. These results show a marked change in both the predicted prevalence for HAdV and the species makeup with the onset of the COVID-19 pandemic. HAdV-B decreased from a pre-pandemic predicted prevalence of up to 40% to less than 5% in 2021, while HAdV-A and HAdV-F species both increased in predicted prevalence.
format Online
Article
Text
id pubmed-9141461
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91414612022-05-28 A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing Galvin, Ben Jones, Jay Powell, Michaela Olin, Katherine Jones, Matthew Robbins, Thomas Int J Mol Sci Article Known genetic variation, in conjunction with post-PCR melting curve analysis, can be leveraged to provide increased taxonomic detail for pathogen identification in commercial molecular diagnostic tests. Increased taxonomic detail may be used by clinicians and public health decision-makers to observe circulation patterns, monitor for outbreaks, and inform testing practices. We propose a method for expanding the taxonomic resolution of PCR diagnostic systems by incorporating a priori knowledge of assay design and sequence information into a genotyping classification model. For multiplexed PCR systems, this framework is generalized to incorporate information from multiple assays to increase classification accuracy. An illustrative hierarchical classification model for human adenovirus (HAdV) species was developed and demonstrated ~95% cross-validated accuracy on a labeled dataset. The model was then applied to a near-real-time surveillance dataset in which deidentified adenovirus detected patient test data from 2018 through 2021 were classified into one of six adenovirus species. These results show a marked change in both the predicted prevalence for HAdV and the species makeup with the onset of the COVID-19 pandemic. HAdV-B decreased from a pre-pandemic predicted prevalence of up to 40% to less than 5% in 2021, while HAdV-A and HAdV-F species both increased in predicted prevalence. MDPI 2022-05-13 /pmc/articles/PMC9141461/ /pubmed/35628251 http://dx.doi.org/10.3390/ijms23105441 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Galvin, Ben
Jones, Jay
Powell, Michaela
Olin, Katherine
Jones, Matthew
Robbins, Thomas
A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing
title A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing
title_full A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing
title_fullStr A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing
title_full_unstemmed A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing
title_short A Hierarchical Genotyping Framework Using DNA Melting Temperatures Applied to Adenovirus Species Typing
title_sort hierarchical genotyping framework using dna melting temperatures applied to adenovirus species typing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141461/
https://www.ncbi.nlm.nih.gov/pubmed/35628251
http://dx.doi.org/10.3390/ijms23105441
work_keys_str_mv AT galvinben ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping
AT jonesjay ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping
AT powellmichaela ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping
AT olinkatherine ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping
AT jonesmatthew ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping
AT robbinsthomas ahierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping
AT galvinben hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping
AT jonesjay hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping
AT powellmichaela hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping
AT olinkatherine hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping
AT jonesmatthew hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping
AT robbinsthomas hierarchicalgenotypingframeworkusingdnameltingtemperaturesappliedtoadenovirusspeciestyping