Cargando…

Genome-Wide Identification and Expressional Profiling of the Metal Tolerance Protein Gene Family in Brassica napus

The Cation Diffusion Facilitator (CDF) family, also named Metal Tolerance Protein (MTP), is one of the gene families involved in heavy metal transport in plants. However, a comprehensive study of MTPs in Brassica napus has not been reported yet. In the present study, we identified 33 BnMTP genes fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Tao, Yang, Wenjing, Chen, Xin, Rong, Hao, Wang, Youping, Jiang, Jinjin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141485/
https://www.ncbi.nlm.nih.gov/pubmed/35627146
http://dx.doi.org/10.3390/genes13050761
Descripción
Sumario:The Cation Diffusion Facilitator (CDF) family, also named Metal Tolerance Protein (MTP), is one of the gene families involved in heavy metal transport in plants. However, a comprehensive study of MTPs in Brassica napus has not been reported yet. In the present study, we identified 33 BnMTP genes from the rapeseed genome using bioinformatic analyses. Subsequently, we analyzed the phylogenetic relationship, gene structure, chromosome distribution, conserved domains, and motifs of the BnMTP gene family. The 33 BnMTPs were phylogenetically divided into three major clusters (Zn-CDFs, Fe/Zn-CDFs, and Mn-CDFs) and seven groups (group 1, 5, 6, 7, 8, 9, and 12). The structural characteristics of the BnMTP members were similar in the same group, but different among groups. Evolutionary analysis indicated that the BnMTP gene family mainly expanded through whole-genome duplication (WGD) and segmental duplication events. Moreover, the prediction of cis-acting elements and microRNA target sites suggested that BnMTPs might be involved in plant growth, development, and stress responses. In addition, we found the expression of 24 BnMTPs in rapeseed leaves or roots could respond to heavy metal ion treatments. These results provided an important basis for clarifying the biological functions of BnMTPs, especially in heavy metal detoxification, and will be helpful in the phytoremediation of heavy metal pollution in soil.