Cargando…
Multivariate Gaussian Copula Mutual Information to Estimate Functional Connectivity with Less Random Architecture
Recognition of a brain region’s interaction is an important field in neuroscience. Most studies use the Pearson correlation to find the interaction between the regions. According to the experimental evidence, there is a nonlinear dependence between the activities of different brain regions that is i...
Autores principales: | Ashrafi, Mahnaz, Soltanian-Zadeh, Hamid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141633/ https://www.ncbi.nlm.nih.gov/pubmed/35626516 http://dx.doi.org/10.3390/e24050631 |
Ejemplares similares
-
A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula
por: Ince, Robin A.A., et al.
Publicado: (2016) -
Geometric Insights into the Multivariate Gaussian Distribution and Its Entropy and Mutual Information
por: Jwo, Dah-Jing, et al.
Publicado: (2023) -
Estimating Gaussian Copulas with Missing Data with and without Expert Knowledge
por: Kertel, Maximilian, et al.
Publicado: (2022) -
Improved dynamic connection detection power in estimated dynamic functional connectivity considering multivariate dependencies between brain regions
por: Maleki Balajoo, Somayeh, et al.
Publicado: (2020) -
Estimating Multivariate Discrete Distributions Using Bernstein Copulas †
por: Fossaluza, Victor, et al.
Publicado: (2018)