Cargando…

Dopamine Photochemical Behaviour under UV Irradiation

To understand the photochemical behaviour of the polydopamine polymer in detail, one would also need to know the behaviour of its building blocks. The electronic absorption, as well as the fluorescence emission and excitation spectra of the dopamine were experimentally and theoretically investigated...

Descripción completa

Detalles Bibliográficos
Autores principales: Falamaş, Alexandra, Petran, Anca, Hada, Alexandru-Milentie, Bende, Attila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141693/
https://www.ncbi.nlm.nih.gov/pubmed/35628293
http://dx.doi.org/10.3390/ijms23105483
Descripción
Sumario:To understand the photochemical behaviour of the polydopamine polymer in detail, one would also need to know the behaviour of its building blocks. The electronic absorption, as well as the fluorescence emission and excitation spectra of the dopamine were experimentally and theoretically investigated considering time-resolved fluorescence spectroscopy and first-principles quantum theory methods. The shape of the experimental absorption spectra obtained for different dopamine species with standard, zwitterionic, protonated, and deprotonated geometries was interpreted by considering the advanced equation-of-motion coupled-cluster theory of DLPNO-STEOM. Dynamical properties such as fluorescence lifetimes or quantum yield were also experimentally investigated and compared with theoretically predicted transition rates based on Fermi’s Golden Rule-like equation. The results show that the photochemical behaviour of dopamine is strongly dependent on the concentration of dopamine, whereas in the case of a high concentration, the zwitterionic form significantly affects the shape of the spectrum. On the other hand, the solvent pH is also a determining factor for the absorption, but especially for the fluorescence spectrum, where at lower pH (5.5), the protonated and, at higher pH (8.0), the deprotonated forms influence the shape of the spectra. Quantum yield measurements showed that, besides the radiative deactivation mechanism characterized by a relatively small QY value, non-radiative deactivation channels are very important in the relaxation process of the electronic excited states of different dopamine species.