Cargando…
Machine-Learning-Based Genome-Wide Association Studies for Uncovering QTL Underlying Soybean Yield and Its Components
A genome-wide association study (GWAS) is currently one of the most recommended approaches for discovering marker-trait associations (MTAs) for complex traits in plant species. Insufficient statistical power is a limiting factor, especially in narrow genetic basis species, that conventional GWAS met...
Autores principales: | Yoosefzadeh-Najafabadi, Mohsen, Eskandari, Milad, Torabi, Sepideh, Torkamaneh, Davoud, Tulpan, Dan, Rajcan, Istvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141736/ https://www.ncbi.nlm.nih.gov/pubmed/35628351 http://dx.doi.org/10.3390/ijms23105538 |
Ejemplares similares
-
Genome-Wide Association Studies of Soybean Yield-Related Hyperspectral Reflectance Bands Using Machine Learning-Mediated Data Integration Methods
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2021) -
Application of SVR-Mediated GWAS for Identification of Durable Genetic Regions Associated with Soybean Seed Quality Traits
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2023) -
Application of machine learning and genetic optimization algorithms for modeling and optimizing soybean yield using its component traits
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2021) -
Optimizing genomic selection in soybean: An important improvement in agricultural genomics
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2022) -
Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2021)