Cargando…
COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans
Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (C...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141749/ https://www.ncbi.nlm.nih.gov/pubmed/35626438 http://dx.doi.org/10.3390/diagnostics12051283 |
_version_ | 1784715419306688512 |
---|---|
author | Suri, Jasjit S. Agarwal, Sushant Chabert, Gian Luca Carriero, Alessandro Paschè, Alessio Danna, Pietro S. C. Saba, Luca Mehmedović, Armin Faa, Gavino Singh, Inder M. Turk, Monika Chadha, Paramjit S. Johri, Amer M. Khanna, Narendra N. Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios D. Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Teji, Jagjit S. Al-Maini, Mustafa Dhanjil, Surinder K. Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Krishnan, Pudukode R. Nagy, Ferenc Ruzsa, Zoltan Fouda, Mostafa M. Naidu, Subbaram Viskovic, Klaudija Kalra, Manudeep K. |
author_facet | Suri, Jasjit S. Agarwal, Sushant Chabert, Gian Luca Carriero, Alessandro Paschè, Alessio Danna, Pietro S. C. Saba, Luca Mehmedović, Armin Faa, Gavino Singh, Inder M. Turk, Monika Chadha, Paramjit S. Johri, Amer M. Khanna, Narendra N. Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios D. Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Teji, Jagjit S. Al-Maini, Mustafa Dhanjil, Surinder K. Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Krishnan, Pudukode R. Nagy, Ferenc Ruzsa, Zoltan Fouda, Mostafa M. Naidu, Subbaram Viskovic, Klaudija Kalra, Manudeep K. |
author_sort | Suri, Jasjit S. |
collection | PubMed |
description | Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models—namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet—were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests—namely, the Mann–Whitney test, paired t-test, and Wilcoxon test—demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0(Lesion) lesion locator passed the intervariability test. |
format | Online Article Text |
id | pubmed-9141749 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91417492022-05-28 COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans Suri, Jasjit S. Agarwal, Sushant Chabert, Gian Luca Carriero, Alessandro Paschè, Alessio Danna, Pietro S. C. Saba, Luca Mehmedović, Armin Faa, Gavino Singh, Inder M. Turk, Monika Chadha, Paramjit S. Johri, Amer M. Khanna, Narendra N. Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios D. Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Teji, Jagjit S. Al-Maini, Mustafa Dhanjil, Surinder K. Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Krishnan, Pudukode R. Nagy, Ferenc Ruzsa, Zoltan Fouda, Mostafa M. Naidu, Subbaram Viskovic, Klaudija Kalra, Manudeep K. Diagnostics (Basel) Article Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models—namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet—were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests—namely, the Mann–Whitney test, paired t-test, and Wilcoxon test—demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0(Lesion) lesion locator passed the intervariability test. MDPI 2022-05-21 /pmc/articles/PMC9141749/ /pubmed/35626438 http://dx.doi.org/10.3390/diagnostics12051283 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Suri, Jasjit S. Agarwal, Sushant Chabert, Gian Luca Carriero, Alessandro Paschè, Alessio Danna, Pietro S. C. Saba, Luca Mehmedović, Armin Faa, Gavino Singh, Inder M. Turk, Monika Chadha, Paramjit S. Johri, Amer M. Khanna, Narendra N. Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios D. Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Teji, Jagjit S. Al-Maini, Mustafa Dhanjil, Surinder K. Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Krishnan, Pudukode R. Nagy, Ferenc Ruzsa, Zoltan Fouda, Mostafa M. Naidu, Subbaram Viskovic, Klaudija Kalra, Manudeep K. COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans |
title | COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans |
title_full | COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans |
title_fullStr | COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans |
title_full_unstemmed | COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans |
title_short | COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans |
title_sort | covlias 1.0(lesion) vs. medseg: an artificial intelligence framework for automated lesion segmentation in covid-19 lung computed tomography scans |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141749/ https://www.ncbi.nlm.nih.gov/pubmed/35626438 http://dx.doi.org/10.3390/diagnostics12051283 |
work_keys_str_mv | AT surijasjits covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT agarwalsushant covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT chabertgianluca covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT carrieroalessandro covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT paschealessio covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT dannapietrosc covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT sabaluca covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT mehmedovicarmin covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT faagavino covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT singhinderm covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT turkmonika covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT chadhaparamjits covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT johriamerm covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT khannanarendran covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT mavrogenisophie covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT lairdjohnr covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT pareekgyan covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT minermartin covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT sobeldavidw covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT balestrieriantonella covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT sfikakispetrosp covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT tsoulfasgeorge covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT protogerouathanasiosd covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT misradurgaprasanna covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT agarwalvikas covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT kitasgeorged covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT tejijagjits covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT almainimustafa covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT dhanjilsurinderk covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT nicolaidesandrew covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT sharmaaditya covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT rathorevijay covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT fatemimostafa covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT alizadazra covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT krishnanpudukoder covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT nagyferenc covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT ruzsazoltan covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT foudamostafam covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT naidusubbaram covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT viskovicklaudija covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans AT kalramanudeepk covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans |