Cargando…

COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans

Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (C...

Descripción completa

Detalles Bibliográficos
Autores principales: Suri, Jasjit S., Agarwal, Sushant, Chabert, Gian Luca, Carriero, Alessandro, Paschè, Alessio, Danna, Pietro S. C., Saba, Luca, Mehmedović, Armin, Faa, Gavino, Singh, Inder M., Turk, Monika, Chadha, Paramjit S., Johri, Amer M., Khanna, Narendra N., Mavrogeni, Sophie, Laird, John R., Pareek, Gyan, Miner, Martin, Sobel, David W., Balestrieri, Antonella, Sfikakis, Petros P., Tsoulfas, George, Protogerou, Athanasios D., Misra, Durga Prasanna, Agarwal, Vikas, Kitas, George D., Teji, Jagjit S., Al-Maini, Mustafa, Dhanjil, Surinder K., Nicolaides, Andrew, Sharma, Aditya, Rathore, Vijay, Fatemi, Mostafa, Alizad, Azra, Krishnan, Pudukode R., Nagy, Ferenc, Ruzsa, Zoltan, Fouda, Mostafa M., Naidu, Subbaram, Viskovic, Klaudija, Kalra, Manudeep K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141749/
https://www.ncbi.nlm.nih.gov/pubmed/35626438
http://dx.doi.org/10.3390/diagnostics12051283
_version_ 1784715419306688512
author Suri, Jasjit S.
Agarwal, Sushant
Chabert, Gian Luca
Carriero, Alessandro
Paschè, Alessio
Danna, Pietro S. C.
Saba, Luca
Mehmedović, Armin
Faa, Gavino
Singh, Inder M.
Turk, Monika
Chadha, Paramjit S.
Johri, Amer M.
Khanna, Narendra N.
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios D.
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Teji, Jagjit S.
Al-Maini, Mustafa
Dhanjil, Surinder K.
Nicolaides, Andrew
Sharma, Aditya
Rathore, Vijay
Fatemi, Mostafa
Alizad, Azra
Krishnan, Pudukode R.
Nagy, Ferenc
Ruzsa, Zoltan
Fouda, Mostafa M.
Naidu, Subbaram
Viskovic, Klaudija
Kalra, Manudeep K.
author_facet Suri, Jasjit S.
Agarwal, Sushant
Chabert, Gian Luca
Carriero, Alessandro
Paschè, Alessio
Danna, Pietro S. C.
Saba, Luca
Mehmedović, Armin
Faa, Gavino
Singh, Inder M.
Turk, Monika
Chadha, Paramjit S.
Johri, Amer M.
Khanna, Narendra N.
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios D.
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Teji, Jagjit S.
Al-Maini, Mustafa
Dhanjil, Surinder K.
Nicolaides, Andrew
Sharma, Aditya
Rathore, Vijay
Fatemi, Mostafa
Alizad, Azra
Krishnan, Pudukode R.
Nagy, Ferenc
Ruzsa, Zoltan
Fouda, Mostafa M.
Naidu, Subbaram
Viskovic, Klaudija
Kalra, Manudeep K.
author_sort Suri, Jasjit S.
collection PubMed
description Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models—namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet—were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests—namely, the Mann–Whitney test, paired t-test, and Wilcoxon test—demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0(Lesion) lesion locator passed the intervariability test.
format Online
Article
Text
id pubmed-9141749
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91417492022-05-28 COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans Suri, Jasjit S. Agarwal, Sushant Chabert, Gian Luca Carriero, Alessandro Paschè, Alessio Danna, Pietro S. C. Saba, Luca Mehmedović, Armin Faa, Gavino Singh, Inder M. Turk, Monika Chadha, Paramjit S. Johri, Amer M. Khanna, Narendra N. Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios D. Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Teji, Jagjit S. Al-Maini, Mustafa Dhanjil, Surinder K. Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Fatemi, Mostafa Alizad, Azra Krishnan, Pudukode R. Nagy, Ferenc Ruzsa, Zoltan Fouda, Mostafa M. Naidu, Subbaram Viskovic, Klaudija Kalra, Manudeep K. Diagnostics (Basel) Article Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models—namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet—were trained by an expert radiologist. The training scheme adopted a fivefold cross-validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests—namely, the Mann–Whitney test, paired t-test, and Wilcoxon test—demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0(Lesion) lesion locator passed the intervariability test. MDPI 2022-05-21 /pmc/articles/PMC9141749/ /pubmed/35626438 http://dx.doi.org/10.3390/diagnostics12051283 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Suri, Jasjit S.
Agarwal, Sushant
Chabert, Gian Luca
Carriero, Alessandro
Paschè, Alessio
Danna, Pietro S. C.
Saba, Luca
Mehmedović, Armin
Faa, Gavino
Singh, Inder M.
Turk, Monika
Chadha, Paramjit S.
Johri, Amer M.
Khanna, Narendra N.
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios D.
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Teji, Jagjit S.
Al-Maini, Mustafa
Dhanjil, Surinder K.
Nicolaides, Andrew
Sharma, Aditya
Rathore, Vijay
Fatemi, Mostafa
Alizad, Azra
Krishnan, Pudukode R.
Nagy, Ferenc
Ruzsa, Zoltan
Fouda, Mostafa M.
Naidu, Subbaram
Viskovic, Klaudija
Kalra, Manudeep K.
COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans
title COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans
title_full COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans
title_fullStr COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans
title_full_unstemmed COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans
title_short COVLIAS 1.0(Lesion) vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans
title_sort covlias 1.0(lesion) vs. medseg: an artificial intelligence framework for automated lesion segmentation in covid-19 lung computed tomography scans
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141749/
https://www.ncbi.nlm.nih.gov/pubmed/35626438
http://dx.doi.org/10.3390/diagnostics12051283
work_keys_str_mv AT surijasjits covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT agarwalsushant covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT chabertgianluca covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT carrieroalessandro covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT paschealessio covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT dannapietrosc covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT sabaluca covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT mehmedovicarmin covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT faagavino covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT singhinderm covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT turkmonika covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT chadhaparamjits covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT johriamerm covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT khannanarendran covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT mavrogenisophie covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT lairdjohnr covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT pareekgyan covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT minermartin covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT sobeldavidw covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT balestrieriantonella covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT sfikakispetrosp covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT tsoulfasgeorge covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT protogerouathanasiosd covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT misradurgaprasanna covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT agarwalvikas covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT kitasgeorged covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT tejijagjits covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT almainimustafa covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT dhanjilsurinderk covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT nicolaidesandrew covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT sharmaaditya covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT rathorevijay covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT fatemimostafa covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT alizadazra covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT krishnanpudukoder covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT nagyferenc covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT ruzsazoltan covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT foudamostafam covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT naidusubbaram covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT viskovicklaudija covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans
AT kalramanudeepk covlias10lesionvsmedseganartificialintelligenceframeworkforautomatedlesionsegmentationincovid19lungcomputedtomographyscans