Cargando…

Optimal Convergence Analysis of Two-Level Nonconforming Finite Element Iterative Methods for 2D/3D MHD Equations

Several two-level iterative methods based on nonconforming finite element methods are applied for solving numerically the 2D/3D stationary incompressible MHD equations under different uniqueness conditions. These two-level algorithms are motivated by applying the m iterations on a coarse grid and co...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Haiyan, Xu, Jiali, Feng, Xinlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141767/
https://www.ncbi.nlm.nih.gov/pubmed/35626472
http://dx.doi.org/10.3390/e24050587
Descripción
Sumario:Several two-level iterative methods based on nonconforming finite element methods are applied for solving numerically the 2D/3D stationary incompressible MHD equations under different uniqueness conditions. These two-level algorithms are motivated by applying the m iterations on a coarse grid and correction once on a fine grid. A one-level Oseen iterative method on a fine mesh is further studied under a weak uniqueness condition. Moreover, the stability and error estimate are rigorously carried out, which prove that the proposed methods are stable and effective. Finally, some numerical examples corroborate the effectiveness of our theoretical analysis and the proposed methods.