Cargando…
Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process
Automatic building semantic segmentation is the most critical and relevant task in several geospatial applications. Methods based on convolutional neural networks (CNNs) are mainly used in current building segmentation. The requirement of huge pixel-level labels is a significant obstacle to achieve...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141811/ https://www.ncbi.nlm.nih.gov/pubmed/35626624 http://dx.doi.org/10.3390/e24050741 |
_version_ | 1784715434232119296 |
---|---|
author | Moghalles, Khaled Li, Heng-Chao Alazeb, Abdulwahab |
author_facet | Moghalles, Khaled Li, Heng-Chao Alazeb, Abdulwahab |
author_sort | Moghalles, Khaled |
collection | PubMed |
description | Automatic building semantic segmentation is the most critical and relevant task in several geospatial applications. Methods based on convolutional neural networks (CNNs) are mainly used in current building segmentation. The requirement of huge pixel-level labels is a significant obstacle to achieve the semantic segmentation of building by CNNs. In this paper, we propose a novel weakly supervised framework for building segmentation, which generates high-quality pixel-level annotations and optimizes the segmentation network. A superpixel segmentation algorithm can predict a boundary map for training images. Then, Superpixels-CRF built on the superpixel regions is guided by spot seeds to propagate information from spot seeds to unlabeled regions, resulting in high-quality pixel-level annotations. Using these high-quality pixel-level annotations, we can train a more robust segmentation network and predict segmentation maps. To iteratively optimize the segmentation network, the predicted segmentation maps are refined, and the segmentation network are retrained. Comparative experiments demonstrate that the proposed segmentation framework achieves a marked improvement in the building’s segmentation quality while reducing human labeling efforts. |
format | Online Article Text |
id | pubmed-9141811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-91418112022-05-28 Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process Moghalles, Khaled Li, Heng-Chao Alazeb, Abdulwahab Entropy (Basel) Article Automatic building semantic segmentation is the most critical and relevant task in several geospatial applications. Methods based on convolutional neural networks (CNNs) are mainly used in current building segmentation. The requirement of huge pixel-level labels is a significant obstacle to achieve the semantic segmentation of building by CNNs. In this paper, we propose a novel weakly supervised framework for building segmentation, which generates high-quality pixel-level annotations and optimizes the segmentation network. A superpixel segmentation algorithm can predict a boundary map for training images. Then, Superpixels-CRF built on the superpixel regions is guided by spot seeds to propagate information from spot seeds to unlabeled regions, resulting in high-quality pixel-level annotations. Using these high-quality pixel-level annotations, we can train a more robust segmentation network and predict segmentation maps. To iteratively optimize the segmentation network, the predicted segmentation maps are refined, and the segmentation network are retrained. Comparative experiments demonstrate that the proposed segmentation framework achieves a marked improvement in the building’s segmentation quality while reducing human labeling efforts. MDPI 2022-05-23 /pmc/articles/PMC9141811/ /pubmed/35626624 http://dx.doi.org/10.3390/e24050741 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Moghalles, Khaled Li, Heng-Chao Alazeb, Abdulwahab Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process |
title | Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process |
title_full | Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process |
title_fullStr | Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process |
title_full_unstemmed | Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process |
title_short | Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process |
title_sort | weakly supervised building semantic segmentation based on spot-seeds and refinement process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141811/ https://www.ncbi.nlm.nih.gov/pubmed/35626624 http://dx.doi.org/10.3390/e24050741 |
work_keys_str_mv | AT moghalleskhaled weaklysupervisedbuildingsemanticsegmentationbasedonspotseedsandrefinementprocess AT lihengchao weaklysupervisedbuildingsemanticsegmentationbasedonspotseedsandrefinementprocess AT alazebabdulwahab weaklysupervisedbuildingsemanticsegmentationbasedonspotseedsandrefinementprocess |