Cargando…
Weakly Supervised Building Semantic Segmentation Based on Spot-Seeds and Refinement Process
Automatic building semantic segmentation is the most critical and relevant task in several geospatial applications. Methods based on convolutional neural networks (CNNs) are mainly used in current building segmentation. The requirement of huge pixel-level labels is a significant obstacle to achieve...
Autores principales: | Moghalles, Khaled, Li, Heng-Chao, Alazeb, Abdulwahab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141811/ https://www.ncbi.nlm.nih.gov/pubmed/35626624 http://dx.doi.org/10.3390/e24050741 |
Ejemplares similares
-
Deep graph cut network for weakly-supervised semantic segmentation
por: Feng, Jiapei, et al.
Publicado: (2021) -
Activation extending based on long-range dependencies for weakly supervised semantic segmentation
por: Liu, Haipeng, et al.
Publicado: (2023) -
Biomedical relation extraction with knowledge base–refined weak supervision
por: Yoon, Wonjin, et al.
Publicado: (2023) -
Supervised and Weakly Supervised Deep Learning for Segmentation and Counting of Cotton Bolls Using Proximal Imagery
por: Adke, Shrinidhi, et al.
Publicado: (2022) -
Weakly supervised semantic segmentation for MRI: exploring the advantages and disadvantages of class activation maps for biological image segmentation with soft boundaries
por: Syed, Shaheen, et al.
Publicado: (2023)