Cargando…
Thresholding Approach for Low-Rank Correlation Matrix Based on MM Algorithm
Background: Low-rank approximation is used to interpret the features of a correlation matrix using visualization tools; however, a low-rank approximation may result in an estimation that is far from zero, even if the corresponding original value is zero. In such a case, the results lead to a misinte...
Autores principales: | Tanioka, Kensuke, Furotani, Yuki, Hiwa, Satoru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141820/ https://www.ncbi.nlm.nih.gov/pubmed/35626464 http://dx.doi.org/10.3390/e24050579 |
Ejemplares similares
-
Proximal iteratively reweighted algorithm for low-rank matrix recovery
por: Ma, Chao-Qun, et al.
Publicado: (2018) -
Revealing Changes in Brain Functional Networks Caused by Focused-Attention Meditation Using Tucker3 Clustering
por: Miyoshi, Takuma, et al.
Publicado: (2020) -
Lower bounds for the low-rank matrix approximation
por: Li, Jicheng, et al.
Publicado: (2017) -
Low-Rank Matrix Denoising Algorithm-Based MRI Image Feature for Therapeutic Effect Evaluation of NCRT on Rectal Cancer
por: Hu, Qin, et al.
Publicado: (2021) -
Low Rank Approximation: Algorithms, Implementation, Applications
por: Markovsky, Ivan
Publicado: (2012)