Cargando…
Privacy-Preserving Image Template Sharing Using Contrastive Learning
With the recent developments of Machine Learning as a Service (MLaaS), various privacy concerns have been raised. Having access to the user’s data, an adversary can design attacks with different objectives, namely, reconstruction or attribute inference attacks. In this paper, we propose two differen...
Autores principales: | Rezaeifar, Shideh, Voloshynovskiy, Slava, Asgari Jirhandeh, Meisam, Kinakh, Vitality |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141880/ https://www.ncbi.nlm.nih.gov/pubmed/35626528 http://dx.doi.org/10.3390/e24050643 |
Ejemplares similares
-
Machine learning through cryptographic glasses: combating adversarial attacks by key-based diversified aggregation
por: Taran, Olga, et al.
Publicado: (2020) -
Information Bottleneck Classification in Extremely Distributed Systems
por: Ullmann, Denis, et al.
Publicado: (2020) -
TURBO: The Swiss Knife of Auto-Encoders
por: Quétant, Guillaume, et al.
Publicado: (2023) -
Differential privacy preserved federated transfer learning for multi-institutional (68)Ga-PET image artefact detection and disentanglement
por: Shiri, Isaac, et al.
Publicado: (2023) -
Privacy-preserving logistic regression with secret sharing
por: Ghavamipour, Ali Reza, et al.
Publicado: (2022)