Cargando…
A Bayesian Surprise Approach in Designing Cognitive Radar for Autonomous Driving
This article proposes the Bayesian surprise as the main methodology that drives the cognitive radar to estimate a target’s future state (i.e., velocity, distance) from noisy measurements and execute a decision to minimize the estimation error over time. The research aims to demonstrate whether the c...
Autores principales: | Zamiri-Jafarian, Yeganeh, Plataniotis, Konstantinos N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141882/ https://www.ncbi.nlm.nih.gov/pubmed/35626556 http://dx.doi.org/10.3390/e24050672 |
Ejemplares similares
-
Radar signal processing for autonomous driving
por: Gamba, Jonah
Publicado: (2019) -
MMW Radar-Based Technologies in Autonomous Driving: A Review
por: Zhou, Taohua, et al.
Publicado: (2020) -
Towards Deep Radar Perception for Autonomous Driving: Datasets, Methods, and Challenges
por: Zhou, Yi, et al.
Publicado: (2022) -
Lean Neural Networks for Autonomous Radar Waveform Design
por: Baietto, Anthony, et al.
Publicado: (2022) -
Neural surprise in somatosensory Bayesian learning
por: Gijsen, Sam, et al.
Publicado: (2021)