Cargando…

A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster

The burden of infectious diseases is crucial for both epidemiological surveillance and prompt public health response. A variety of data, including textual sources, can be fruitfully exploited. Dealing with unstructured data necessitates the use of methods for automatic data-driven variable construct...

Descripción completa

Detalles Bibliográficos
Autores principales: Lanera, Corrado, Baldi, Ileana, Francavilla, Andrea, Barbieri, Elisa, Tramontan, Lara, Scamarcia, Antonio, Cantarutti, Luigi, Giaquinto, Carlo, Gregori, Dario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141951/
https://www.ncbi.nlm.nih.gov/pubmed/35627495
http://dx.doi.org/10.3390/ijerph19105959
_version_ 1784715468264701952
author Lanera, Corrado
Baldi, Ileana
Francavilla, Andrea
Barbieri, Elisa
Tramontan, Lara
Scamarcia, Antonio
Cantarutti, Luigi
Giaquinto, Carlo
Gregori, Dario
author_facet Lanera, Corrado
Baldi, Ileana
Francavilla, Andrea
Barbieri, Elisa
Tramontan, Lara
Scamarcia, Antonio
Cantarutti, Luigi
Giaquinto, Carlo
Gregori, Dario
author_sort Lanera, Corrado
collection PubMed
description The burden of infectious diseases is crucial for both epidemiological surveillance and prompt public health response. A variety of data, including textual sources, can be fruitfully exploited. Dealing with unstructured data necessitates the use of methods for automatic data-driven variable construction and machine learning techniques (MLT) show promising results. In this framework, varicella-zoster virus (VZV) infection was chosen to perform an automatic case identification with MLT. Pedianet, an Italian pediatric primary care database, was used to train a series of models to identify whether a child was diagnosed with VZV infection between 2004 and 2014 in the Veneto region, starting from free text fields. Given the nature of the task, a recurrent neural network (RNN) with bidirectional gated recurrent units (GRUs) was chosen; the same models were then used to predict the children’s status for the following years. A gold standard produced by manual extraction for the same interval was available for comparison. RNN-GRU improved its performance over time, reaching the maximum value of area under the ROC curve (AUC-ROC) of 95.30% at the end of the period. The absolute bias in estimates of VZV infection was below 1.5% in the last five years analyzed. The findings in this study could assist the large-scale use of EHRs for clinical outcome predictive modeling and help establish high-performance systems in other medical domains.
format Online
Article
Text
id pubmed-9141951
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91419512022-05-28 A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster Lanera, Corrado Baldi, Ileana Francavilla, Andrea Barbieri, Elisa Tramontan, Lara Scamarcia, Antonio Cantarutti, Luigi Giaquinto, Carlo Gregori, Dario Int J Environ Res Public Health Article The burden of infectious diseases is crucial for both epidemiological surveillance and prompt public health response. A variety of data, including textual sources, can be fruitfully exploited. Dealing with unstructured data necessitates the use of methods for automatic data-driven variable construction and machine learning techniques (MLT) show promising results. In this framework, varicella-zoster virus (VZV) infection was chosen to perform an automatic case identification with MLT. Pedianet, an Italian pediatric primary care database, was used to train a series of models to identify whether a child was diagnosed with VZV infection between 2004 and 2014 in the Veneto region, starting from free text fields. Given the nature of the task, a recurrent neural network (RNN) with bidirectional gated recurrent units (GRUs) was chosen; the same models were then used to predict the children’s status for the following years. A gold standard produced by manual extraction for the same interval was available for comparison. RNN-GRU improved its performance over time, reaching the maximum value of area under the ROC curve (AUC-ROC) of 95.30% at the end of the period. The absolute bias in estimates of VZV infection was below 1.5% in the last five years analyzed. The findings in this study could assist the large-scale use of EHRs for clinical outcome predictive modeling and help establish high-performance systems in other medical domains. MDPI 2022-05-13 /pmc/articles/PMC9141951/ /pubmed/35627495 http://dx.doi.org/10.3390/ijerph19105959 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lanera, Corrado
Baldi, Ileana
Francavilla, Andrea
Barbieri, Elisa
Tramontan, Lara
Scamarcia, Antonio
Cantarutti, Luigi
Giaquinto, Carlo
Gregori, Dario
A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster
title A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster
title_full A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster
title_fullStr A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster
title_full_unstemmed A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster
title_short A Deep Learning Approach to Estimate the Incidence of Infectious Disease Cases for Routinely Collected Ambulatory Records: The Example of Varicella-Zoster
title_sort deep learning approach to estimate the incidence of infectious disease cases for routinely collected ambulatory records: the example of varicella-zoster
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141951/
https://www.ncbi.nlm.nih.gov/pubmed/35627495
http://dx.doi.org/10.3390/ijerph19105959
work_keys_str_mv AT laneracorrado adeeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT baldiileana adeeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT francavillaandrea adeeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT barbierielisa adeeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT tramontanlara adeeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT scamarciaantonio adeeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT cantaruttiluigi adeeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT giaquintocarlo adeeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT gregoridario adeeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT laneracorrado deeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT baldiileana deeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT francavillaandrea deeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT barbierielisa deeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT tramontanlara deeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT scamarciaantonio deeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT cantaruttiluigi deeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT giaquintocarlo deeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster
AT gregoridario deeplearningapproachtoestimatetheincidenceofinfectiousdiseasecasesforroutinelycollectedambulatoryrecordstheexampleofvaricellazoster