Cargando…
Effects of Multi-Omics Characteristics on Identification of Driver Genes Using Machine Learning Algorithms
Cancer is a complex disease caused by genomic and epigenetic alterations; hence, identifying meaningful cancer drivers is an important and challenging task. Most studies have detected cancer drivers with mutated traits, while few studies consider multiple omics characteristics as important factors....
Autores principales: | Li, Feng, Chu, Xin, Dai, Lingyun, Wang, Juan, Liu, Jinxing, Shang, Junliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9141966/ https://www.ncbi.nlm.nih.gov/pubmed/35627101 http://dx.doi.org/10.3390/genes13050716 |
Ejemplares similares
-
Network embedding framework for driver gene discovery by combining functional and structural information
por: Chu, Xin, et al.
Publicado: (2023) -
NESM: a network embedding method for tumor stratification by integrating multi-omics data
por: Li, Feng, et al.
Publicado: (2022) -
Non-negative low-rank representation based on dictionary learning for single-cell RNA-sequencing data analysis
por: Wang, Juan, et al.
Publicado: (2022) -
MSF-UBRW: An Improved Unbalanced Bi-Random Walk Method to Infer Human lncRNA-Disease Associations
por: Dai, Lingyun, et al.
Publicado: (2022) -
Identification of the expressome by machine learning on omics data
por: Sartor, Ryan C., et al.
Publicado: (2019)