Cargando…
Community Partitioning over Feature-Rich Networks Using an Extended K-Means Method
This paper proposes a meaningful and effective extension of the celebrated K-means algorithm to detect communities in feature-rich networks, due to our assumption of non-summability mode. We least-squares approximate given matrices of inter-node links and feature values, leading to a straightforward...
Autores principales: | Shalileh, Soroosh, Mirkin, Boris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142054/ https://www.ncbi.nlm.nih.gov/pubmed/35626512 http://dx.doi.org/10.3390/e24050626 |
Ejemplares similares
-
Least-squares community extraction in feature-rich networks using similarity data
por: Shalileh, Soroosh, et al.
Publicado: (2021) -
Finding reproducible cluster partitions for the k-means algorithm
por: Lisboa, Paulo JG, et al.
Publicado: (2013) -
Identifying dyslexia in school pupils from eye movement and demographic data using artificial intelligence
por: Shalileh, Soroosh, et al.
Publicado: (2023) -
Finding the mean in a partition distribution
por: Glassen, Thomas J., et al.
Publicado: (2018) -
Overlapping community detection in networks based on link partitioning and partitioning around medoids
por: Ponomarenko, Alexander, et al.
Publicado: (2021)