Cargando…

Optimal Energy-Storage Configuration for Microgrids Based on SOH Estimation and Deep Q-Network

Energy storage is an important adjustment method to improve the economy and reliability of a power system. Due to the complexity of the coupling relationship of elements such as the power source, load, and energy storage in the microgrid, there are problems of insufficient performance in terms of ec...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Shuai, Li, Jinglin, Jiang, Chengpeng, Xiao, Wendong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142080/
https://www.ncbi.nlm.nih.gov/pubmed/35626515
http://dx.doi.org/10.3390/e24050630
_version_ 1784715495928233984
author Chen, Shuai
Li, Jinglin
Jiang, Chengpeng
Xiao, Wendong
author_facet Chen, Shuai
Li, Jinglin
Jiang, Chengpeng
Xiao, Wendong
author_sort Chen, Shuai
collection PubMed
description Energy storage is an important adjustment method to improve the economy and reliability of a power system. Due to the complexity of the coupling relationship of elements such as the power source, load, and energy storage in the microgrid, there are problems of insufficient performance in terms of economic operation and efficient dispatching. In view of this, this paper proposes an energy storage configuration optimization model based on reinforcement learning and battery state of health assessment. Firstly, a quantitative assessment of battery health life loss based on deep learning was performed. Secondly, on the basis of considering comprehensive energy complementarity, a two-layer optimal configuration model was designed to optimize the capacity configuration and dispatch operation. Finally, the feasibility of the proposed method in microgrid energy storage planning and operation was verified by experimentation. By integrating reinforcement learning and traditional optimization methods, the proposed method did not rely on the accurate prediction of the power supply and load and can make decisions based only on the real-time information of the microgrid. In this paper, the advantages and disadvantages of the proposed method and existing methods were analyzed, and the results show that the proposed method can effectively improve the performance of dynamic planning for energy storage in microgrids.
format Online
Article
Text
id pubmed-9142080
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91420802022-05-28 Optimal Energy-Storage Configuration for Microgrids Based on SOH Estimation and Deep Q-Network Chen, Shuai Li, Jinglin Jiang, Chengpeng Xiao, Wendong Entropy (Basel) Article Energy storage is an important adjustment method to improve the economy and reliability of a power system. Due to the complexity of the coupling relationship of elements such as the power source, load, and energy storage in the microgrid, there are problems of insufficient performance in terms of economic operation and efficient dispatching. In view of this, this paper proposes an energy storage configuration optimization model based on reinforcement learning and battery state of health assessment. Firstly, a quantitative assessment of battery health life loss based on deep learning was performed. Secondly, on the basis of considering comprehensive energy complementarity, a two-layer optimal configuration model was designed to optimize the capacity configuration and dispatch operation. Finally, the feasibility of the proposed method in microgrid energy storage planning and operation was verified by experimentation. By integrating reinforcement learning and traditional optimization methods, the proposed method did not rely on the accurate prediction of the power supply and load and can make decisions based only on the real-time information of the microgrid. In this paper, the advantages and disadvantages of the proposed method and existing methods were analyzed, and the results show that the proposed method can effectively improve the performance of dynamic planning for energy storage in microgrids. MDPI 2022-04-29 /pmc/articles/PMC9142080/ /pubmed/35626515 http://dx.doi.org/10.3390/e24050630 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chen, Shuai
Li, Jinglin
Jiang, Chengpeng
Xiao, Wendong
Optimal Energy-Storage Configuration for Microgrids Based on SOH Estimation and Deep Q-Network
title Optimal Energy-Storage Configuration for Microgrids Based on SOH Estimation and Deep Q-Network
title_full Optimal Energy-Storage Configuration for Microgrids Based on SOH Estimation and Deep Q-Network
title_fullStr Optimal Energy-Storage Configuration for Microgrids Based on SOH Estimation and Deep Q-Network
title_full_unstemmed Optimal Energy-Storage Configuration for Microgrids Based on SOH Estimation and Deep Q-Network
title_short Optimal Energy-Storage Configuration for Microgrids Based on SOH Estimation and Deep Q-Network
title_sort optimal energy-storage configuration for microgrids based on soh estimation and deep q-network
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142080/
https://www.ncbi.nlm.nih.gov/pubmed/35626515
http://dx.doi.org/10.3390/e24050630
work_keys_str_mv AT chenshuai optimalenergystorageconfigurationformicrogridsbasedonsohestimationanddeepqnetwork
AT lijinglin optimalenergystorageconfigurationformicrogridsbasedonsohestimationanddeepqnetwork
AT jiangchengpeng optimalenergystorageconfigurationformicrogridsbasedonsohestimationanddeepqnetwork
AT xiaowendong optimalenergystorageconfigurationformicrogridsbasedonsohestimationanddeepqnetwork