Cargando…
An Interactive Online App for Predicting Diabetes via Machine Learning from Environment-Polluting Chemical Exposure Data
The early prediction and identification of risk factors for diabetes may prevent or delay diabetes progression. In this study, we developed an interactive online application that provides the predictive probabilities of prediabetes and diabetes in 4 years based on a Bayesian network (BN) classifier,...
Autores principales: | Oh, Rosy, Lee, Hong Kyu, Pak, Youngmi Kim, Oh, Man-Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142138/ https://www.ncbi.nlm.nih.gov/pubmed/35627338 http://dx.doi.org/10.3390/ijerph19105800 |
Ejemplares similares
-
Enhancing teacher–student interactions and student online engagement in an online learning environment
por: Ong, Sharmaine Gek Teng, et al.
Publicado: (2023) -
The Polluters: The Making of Our Chemically Altered Environment
por: Howard, Gregory J.
Publicado: (2011) -
Chemical Pollutants of Pharmaceutical Origin Present in the Environment
por: Corra, Lilian
Publicado: (2018) -
Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis
por: Ghanekar, Pushkar G., et al.
Publicado: (2022) -
Elucidating Gene-by-Environment Interactions Associated with Differential Susceptibility to Chemical Exposure
por: Balik-Meisner, Michele, et al.
Publicado: (2018)