Cargando…

Efficient 3D AlexNet Architecture for Object Recognition Using Syntactic Patterns from Medical Images

In computer vision and medical image processing, object recognition is the primary concern today. Humans require only a few milliseconds for object recognition and visual stimulation. This led to the development of a computer-specific pattern recognition method in this study for identifying objects...

Descripción completa

Detalles Bibliográficos
Autores principales: Rani, Shilpa, Ghai, Deepika, Kumar, Sandeep, Kantipudi, MVV Prasad, Alharbi, Amal H., Ullah, Mohammad Aman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142332/
https://www.ncbi.nlm.nih.gov/pubmed/35634047
http://dx.doi.org/10.1155/2022/7882924
Descripción
Sumario:In computer vision and medical image processing, object recognition is the primary concern today. Humans require only a few milliseconds for object recognition and visual stimulation. This led to the development of a computer-specific pattern recognition method in this study for identifying objects in medical images such as brain tumors. Initially, an adaptive median filter is used to remove the noise from MRI images. Thereafter, the contrast image enhancement technique is used to improve the quality of the image. To evaluate the wireframe model, the cellular logic array processing (CLAP)-based algorithm is then applied to images. The basic patterns of three-dimensional (3D) images are then identified from the input image by scanning the whole image. The frequency of these patterns is also used for object classification. A deep neural network is then utilized for the classification of brain tumor. In the proposed model, the syntactic pattern recognition technique is used to find the feature vector and 3D AlexNet is used for brain tumor classification. To evaluate the performance of the proposed work, three benchmark brain tumor datasets are used, i.e., Figshare, Brain MRI Kaggle, and Medical MRI datasets and BraTS 2019 dataset. The comparative analyses reveal that the proposed brain tumor classification model achieves significantly better performance than the existing models.