Cargando…
A novel high-throughput single B-cell cloning platform for isolation and characterization of high-affinity and potent SARS-CoV-2 neutralizing antibodies
Monoclonal antibodies (mAbs) that are specific to SARS-CoV-2 can be useful in diagnosing, preventing, and treating the coronavirus (COVID-19) illness. Strategies for the high-throughput and rapid isolation of these potent neutralizing antibodies are critical toward the development of therapeutically...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142369/ https://www.ncbi.nlm.nih.gov/pubmed/35640847 http://dx.doi.org/10.1016/j.antiviral.2022.105349 |
Sumario: | Monoclonal antibodies (mAbs) that are specific to SARS-CoV-2 can be useful in diagnosing, preventing, and treating the coronavirus (COVID-19) illness. Strategies for the high-throughput and rapid isolation of these potent neutralizing antibodies are critical toward the development of therapeutically targeting COVID-19 as well as other infectious diseases. In the present study, a single B-cell cloning method was used to screen the Wuhan-Hu-1 strain of SARS-CoV-2 receptor-binding domain (RBD) specific, high affinity, and neutralizing mAbs from patients’ blood samples. An RBD-specific antibody, SAR03, was discovered that showed high binding (ELISA and SPR) and neutralizing activity (competitive ELISA and pseudovirus-based reporter assay) against the Wuhan-Hu-1 strain of SARS-CoV-2. Mechanistic studies on human cells revealed that SAR03 competes with the ACE-2 receptor for binding with the RBD domain (S1 subunit) present in the spike protein of SARS-CoV-2. This study highlights the potential of the single B cell cloning method for the rapid and efficient screening of high-affinity and effective neutralizing antibodies for SARS-CoV-2 and other emerging infectious diseases. |
---|