Cargando…
Identification and epidemiological characterization of Type-2 diabetes sub-population using an unsupervised machine learning approach
BACKGROUND: Studies on Type-2 Diabetes Mellitus (T2DM) have revealed heterogeneous sub-populations in terms of underlying pathologies. However, the identification of sub-populations in epidemiological datasets remains unexplored. We here focus on the detection of T2DM clusters in epidemiological dat...
Autores principales: | Bej, Saptarshi, Sarkar, Jit, Biswas, Saikat, Mitra, Pabitra, Chakrabarti, Partha, Wolkenhauer, Olaf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142500/ https://www.ncbi.nlm.nih.gov/pubmed/35624098 http://dx.doi.org/10.1038/s41387-022-00206-2 |
Ejemplares similares
-
Self-Attention-Based Models for the Extraction of Molecular Interactions from Biological Texts
por: Srivastava, Prashant, et al.
Publicado: (2021) -
Automated annotation of rare-cell types from single-cell RNA-sequencing data through synthetic oversampling
por: Bej, Saptarshi, et al.
Publicado: (2021) -
Keratoconus severity identification using unsupervised machine learning
por: Yousefi, Siamak, et al.
Publicado: (2018) -
Unsupervised Machine Learning to Identify Separable Clinical Alzheimer’s Disease Sub-Populations
por: Prakash, Jayant, et al.
Publicado: (2021) -
Use of unsupervised machine learning to characterise HIV predictors in sub-Saharan Africa
por: Mutai, Charles K., et al.
Publicado: (2023)