Cargando…
A deep learning-based radiomics approach to predict head and neck tumor regression for adaptive radiotherapy
Early regression—the regression in tumor volume during the initial phase of radiotherapy (approximately 2 weeks after treatment initiation)—is a common occurrence during radiotherapy. This rapid radiation-induced tumor regression may alter target coordinates, necessitating adaptive radiotherapy (ART...
Autores principales: | Tanaka, Shohei, Kadoya, Noriyuki, Sugai, Yuto, Umeda, Mariko, Ishizawa, Miyu, Katsuta, Yoshiyuki, Ito, Kengo, Takeda, Ken, Jingu, Keiichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142601/ https://www.ncbi.nlm.nih.gov/pubmed/35624113 http://dx.doi.org/10.1038/s41598-022-12170-z |
Ejemplares similares
-
Development of a prediction model for head and neck volume reduction by clinical factors, dose–volume histogram parameters and radiomics in head and neck cancer
por: Ishizawa, Miyu, et al.
Publicado: (2023) -
Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients
por: Sugai, Yuto, et al.
Publicado: (2021) -
Development of a collapsed cone convolution/superposition dose calculation algorithm with a mass density-specific water kernel for magnetic resonance-guided radiotherapy
por: Ito, Kengo, et al.
Publicado: (2023) -
Feasibility of Differential Dose—Volume Histogram Features in Multivariate Prediction Model for Radiation Pneumonitis Occurrence
por: Katsuta, Yoshiyuki, et al.
Publicado: (2022) -
Evaluation of Unity 1.5 T MR‐linac plan quality in patients with prostate cancer
por: Tanaka, Shohei, et al.
Publicado: (2023)