Cargando…
Dataset of normalized probability distributions of virtual bond lengths, bond angles, and dihedral angles for the coarse-grained single-stranded DNA structures
The utility of the coarse-grained (CG) single-stranded DNA (ssDNA) model can drastically reduce the compute time for simulating the ssDNA dynamics. The model-matched CG potentials and the inherent potential constants can be derived by coarse-graining the experimentally measured ssDNA structures. A u...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142626/ https://www.ncbi.nlm.nih.gov/pubmed/35637888 http://dx.doi.org/10.1016/j.dib.2022.108284 |
Sumario: | The utility of the coarse-grained (CG) single-stranded DNA (ssDNA) model can drastically reduce the compute time for simulating the ssDNA dynamics. The model-matched CG potentials and the inherent potential constants can be derived by coarse-graining the experimentally measured ssDNA structures. A useful and widespread treatment of the CG model is to use three different pseudo-atoms P, S, and B to represent the atomic groups of phosphate, sugar, and base, respectively, in each nucleotide of the ssDNA structures. The three pseudo-atoms generate nine types of the structural parameters to characterize the unstructured ssDNA conformations, including three (virtual) bond lengths (P-S, S-B, and S-P) between two neighbouring beads, four bond angles (P-S-P, S-P-S, P-S-B, and B-S-P) between three adjacent bonds, and two dihedral angles (P-S-P-S and S-P-S-P) between three successive bonds. This paper mainly presents the data of normalized probability distributions of the bond lengths, bond angles, and dihedral angles for the CG ssDNAs. |
---|