Cargando…

Ilixadencel, a Cell-based Immune Primer, plus Sunitinib Versus Sunitinib Alone in Metastatic Renal Cell Carcinoma: A Randomized Phase 2 Study

BACKGROUND: The prognosis of patients with synchronous metastatic renal cell carcinoma (mRCC) is poor. Whereas single-agent tyrosine kinase inhibition (TKI) is clearly insufficient, the effects can be enhanced by combinations with immune checkpoint inhibitors. Innovative treatment options combining...

Descripción completa

Detalles Bibliográficos
Autores principales: Lindskog, Magnus, Laurell, Anna, Kjellman, Anders, Melichar, Bohuslav, Rey, Pablo Maroto, Zieliński, Henryk, Villacampa, Felipe, Bigot, Pierre, Zoltan, Bajory, Parikh, Omi, Alba, David Vazquez, Jellvert, Åsa, Flaskó, Tibor, Gallardo, Enrique, Caparrós, Maria José Ribal, Purkalne, Gunta, Suenaert, Peter, Karlsson-Parra, Alex, Ljungberg, Börje
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142735/
https://www.ncbi.nlm.nih.gov/pubmed/35638086
http://dx.doi.org/10.1016/j.euros.2022.03.012
Descripción
Sumario:BACKGROUND: The prognosis of patients with synchronous metastatic renal cell carcinoma (mRCC) is poor. Whereas single-agent tyrosine kinase inhibition (TKI) is clearly insufficient, the effects can be enhanced by combinations with immune checkpoint inhibitors. Innovative treatment options combining TKI and other immune-stimulating agents could prove beneficial. OBJECTIVE: To evaluate the clinical effects on metastatic disease when two doses of allogeneic monocyte-derived dendritic cells (ilixadencel) are administrated intratumorally followed by nephrectomy and treatment with sunitinib compared with nephrectomy and sunitinib monotherapy, in patients with synchronous mRCC. DESIGN, SETTING, AND PARTICIPANTS: A randomized (2:1) phase 2 multicenter trial enrolled 88 patients with newly diagnosed mRCC to treatment with the combination ilixadencel/sunitinib (ILIXA/SUN; 58 patients) or sunitinib alone (SUN; 30 patients). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary endpoints were 18-mo survival rate and overall survival (OS). A secondary endpoint was objective response rate (ORR) assessed up to 18 mo after enrollment. Statistic evaluations included Kaplan-Meier estimates, log-rank tests, Cox regression, and stratified Cochran-Mantel-Haenszel tests. RESULTS AND LIMITATIONS: The median OS was 35.6 mo in the ILIXA/SUN arm versus 25.3 mo in the SUN arm (hazard ratio 0.73, 95% confidence interval 0.42–1.27; p = 0.25), while the 18-mo OS rates were 63% and 66% in the ILIXA/SUN and SUN arms, respectively. The confirmed ORR in the ILIXA/SUN arm were 42.2% (19/45), including three patients with complete response, versus 24.0% (six/25) in the SUN arm (p = 0.13) without complete responses. The study was not adequately powered to detect modest differences in survival. CONCLUSIONS: The study failed to meet its primary endpoints. However, ilixadencel in combination with sunitinib was associated with a numerically higher, nonsignificant, confirmed response rate, including complete responses, compared with sunitinib monotherapy. PATIENT SUMMARY: We studied the effects of intratumoral vaccination with ilixadencel followed by sunitinib versus sunitinib only in a randomized phase 2 study. The combination treatment showed numerically higher numbers of confirmed responses, suggesting an immunologic effect.