Cargando…
Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation
PURPOSE: Ensembles of convolutional neural networks (CNNs) often outperform a single CNN in medical image segmentation tasks, but inference is computationally more expensive and makes ensembles unattractive for some applications. We compared the performance of differently constructed ensembles with...
Autores principales: | Noothout, Julia M. H., Lessmann, Nikolas, van Eede, Matthijs C., van Harten, Louis D., Sogancioglu, Ecem, Heslinga, Friso G., Veta, Mitko, van Ginneken, Bram, Išgum, Ivana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142841/ https://www.ncbi.nlm.nih.gov/pubmed/35692896 http://dx.doi.org/10.1117/1.JMI.9.5.052407 |
Ejemplares similares
-
Special Section Guest Editorial: Advances in High-Dimensional Medical Image Processing
por: Išgum, Ivana, et al.
Publicado: (2022) -
Measuring brain atrophy with a generalized formulation of the boundary shift integral()
por: Prados, Ferran, et al.
Publicado: (2015) -
Quantifying Graft Detachment after Descemet's Membrane Endothelial Keratoplasty with Deep Convolutional Neural Networks
por: Heslinga, Friso G., et al.
Publicado: (2020) -
Multiset sparse redundancy analysis for high‐dimensional omics data
por: Csala, Attila, et al.
Publicado: (2018) -
Globaltest confidence regions and their application to ridge regression
por: Xu, Ningning, et al.
Publicado: (2021)