Cargando…

Increase in Mitochondrial D-Loop Region Methylation Levels in Mild Cognitive Impairment Individuals

Methylation levels of the mitochondrial displacement loop (D-loop) region have been reported to be altered in the brain and blood of Alzheimer’s disease (AD) patients. Moreover, a dynamic D-loop methylation pattern was observed in the brain of transgenic AD mice along with disease progression. Howev...

Descripción completa

Detalles Bibliográficos
Autores principales: Stoccoro, Andrea, Baldacci, Filippo, Ceravolo, Roberto, Giampietri, Linda, Tognoni, Gloria, Siciliano, Gabriele, Migliore, Lucia, Coppedè, Fabio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9142993/
https://www.ncbi.nlm.nih.gov/pubmed/35628202
http://dx.doi.org/10.3390/ijms23105393
Descripción
Sumario:Methylation levels of the mitochondrial displacement loop (D-loop) region have been reported to be altered in the brain and blood of Alzheimer’s disease (AD) patients. Moreover, a dynamic D-loop methylation pattern was observed in the brain of transgenic AD mice along with disease progression. However, investigations on the blood cells of AD patients in the prodromal phases of the disease have not been performed so far. The aim of this study was to analyze D-loop methylation levels by means of the MS-HRM technique in the peripheral blood cells of 14 mild cognitive impairment (MCI) patients, 18 early stage AD patients, 70 advanced stage AD patients, and 105 healthy control subjects. We found higher D-loop methylation levels in MCI patients than in control subjects and AD patients. Moreover, higher D-loop methylation levels were observed in control subjects than in AD patients in advanced stages of the disease, but not in those at early stages. The present pilot study shows that peripheral D-loop methylation levels differ in patients at different stages of AD pathology, suggesting that further studies deserve to be performed in order to validate the usefulness of D-loop methylation analysis as a peripheral biomarker for the early detection of AD.