Cargando…
Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa oleifera on MCF-7 and HUVEC Cell Lines
Nowadays, green synthesized nanoparticles (NPs) are extensively investigated to explore their biological potential. They are being explored to treat different infectious and cancerous diseases. Therefore, the current study was designed to evaluate the cytotoxic and genotoxic effects of biosynthesize...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143030/ https://www.ncbi.nlm.nih.gov/pubmed/35631722 http://dx.doi.org/10.3390/plants11101293 |
Sumario: | Nowadays, green synthesized nanoparticles (NPs) are extensively investigated to explore their biological potential. They are being explored to treat different infectious and cancerous diseases. Therefore, the current study was designed to evaluate the cytotoxic and genotoxic effects of biosynthesized silver nanoparticles (AgNPs) from the medicinal plant Moringa oleifera on breast cancer (MCF-7) and HUVEC (human umbilical vein endothelial cells) cell lines. M. oleifera-mediated AgNPs were synthesized from the M. oleifera extract (MOE) and then characterized through the use of a scanning electron microscope (SEM), X-ray diffraction (XRD) and UV–vis spectrophotometer. Biosynthesized AgNPs and MOE were employed on MCF-7 and HUVEC cell lines to evaluate their cytotoxic and genotoxic effects. More cytotoxic effects were observed by AgNPs and MOE on MCF-7 cell lines. The IC(50) for biosynthesized AgNPs was found to be 5 μg/mL. DNA damage was also observed by the MOE and AgNPs on MCF-7 cell lines. However, non-significant DNA damage was observed by MOE and AgNPs on HUVEC cell lines. The findings of the current study revealed the cytotoxic and genotoxic effects of biosynthesized AgNPs on MCF-7 cell lines. However, these AgNPs were considered safe for normal HUVEC cell lines. |
---|