Cargando…

Mechanical Behavior and Structural Characterization of a Cu-Al-Ni-Based Shape-Memory Alloy Subjected to Isothermal Uniaxial Megaplastic Compression

For the first time, uniaxial megaplastic compression was successfully applied to a polycrystalline shape-memory Cu-Al-Ni-based alloy. The samples before and after uniaxial megaplastic compression were examined by methods of X-ray diffraction, optical, electron transmission, and scanning microscopy....

Descripción completa

Detalles Bibliográficos
Autores principales: Pushin, Vladimir, Kuranova, Nataliya, Svirid, Alexey E., Ustyugov, Yurii
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143215/
https://www.ncbi.nlm.nih.gov/pubmed/35629739
http://dx.doi.org/10.3390/ma15103713
_version_ 1784715750571769856
author Pushin, Vladimir
Kuranova, Nataliya
Svirid, Alexey E.
Ustyugov, Yurii
author_facet Pushin, Vladimir
Kuranova, Nataliya
Svirid, Alexey E.
Ustyugov, Yurii
author_sort Pushin, Vladimir
collection PubMed
description For the first time, uniaxial megaplastic compression was successfully applied to a polycrystalline shape-memory Cu-Al-Ni-based alloy. The samples before and after uniaxial megaplastic compression were examined by methods of X-ray diffraction, optical, electron transmission, and scanning microscopy. The temperature dependences of electrical resistance and the mechanical properties of the alloys under uniaxial tension were also measured. The mechanical behavior under uniaxial megaplastic compression in isothermal conditions in the range of 300–1073 K was studied using the Instron 8862 electric testing machine. The microstructure, phase composition, and martensitic transformations in the eutectoid alloy (Cu-14wt.%Al–4 wt.%Ni) were studied. The radical refinement of the grain structure of the initial hardened D0(3) austenite was found under controlled isothermal compression, due to dynamic recrystallization in the temperature range 673–1073 K and velocities of 0.5–5 mm/min. Compression at 873–1073 K was accompanied by simultaneous partial pro-eutectoid decomposition with the precipitation of the γ(2) phase. Compression at temperatures of 673 and 773 K—that is, below the eutectoid decomposition temperature (840 K)—was accompanied by the precipitation of disperse γ(2) and α phases, and ultradisperse B2’ particles. Cooling of the deformed alloy to room temperature after performing each regime of compression led to thermoelastic martensitic transformation, together with the precipitation of the β′ and γ′ phases. The formation of a fine-grained structure produced an unusual combination of strength and plasticity of the initially brittle alloy both under controlled uniaxial compression, and during subsequent tensile tests at room temperature.
format Online
Article
Text
id pubmed-9143215
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-91432152022-05-29 Mechanical Behavior and Structural Characterization of a Cu-Al-Ni-Based Shape-Memory Alloy Subjected to Isothermal Uniaxial Megaplastic Compression Pushin, Vladimir Kuranova, Nataliya Svirid, Alexey E. Ustyugov, Yurii Materials (Basel) Article For the first time, uniaxial megaplastic compression was successfully applied to a polycrystalline shape-memory Cu-Al-Ni-based alloy. The samples before and after uniaxial megaplastic compression were examined by methods of X-ray diffraction, optical, electron transmission, and scanning microscopy. The temperature dependences of electrical resistance and the mechanical properties of the alloys under uniaxial tension were also measured. The mechanical behavior under uniaxial megaplastic compression in isothermal conditions in the range of 300–1073 K was studied using the Instron 8862 electric testing machine. The microstructure, phase composition, and martensitic transformations in the eutectoid alloy (Cu-14wt.%Al–4 wt.%Ni) were studied. The radical refinement of the grain structure of the initial hardened D0(3) austenite was found under controlled isothermal compression, due to dynamic recrystallization in the temperature range 673–1073 K and velocities of 0.5–5 mm/min. Compression at 873–1073 K was accompanied by simultaneous partial pro-eutectoid decomposition with the precipitation of the γ(2) phase. Compression at temperatures of 673 and 773 K—that is, below the eutectoid decomposition temperature (840 K)—was accompanied by the precipitation of disperse γ(2) and α phases, and ultradisperse B2’ particles. Cooling of the deformed alloy to room temperature after performing each regime of compression led to thermoelastic martensitic transformation, together with the precipitation of the β′ and γ′ phases. The formation of a fine-grained structure produced an unusual combination of strength and plasticity of the initially brittle alloy both under controlled uniaxial compression, and during subsequent tensile tests at room temperature. MDPI 2022-05-22 /pmc/articles/PMC9143215/ /pubmed/35629739 http://dx.doi.org/10.3390/ma15103713 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pushin, Vladimir
Kuranova, Nataliya
Svirid, Alexey E.
Ustyugov, Yurii
Mechanical Behavior and Structural Characterization of a Cu-Al-Ni-Based Shape-Memory Alloy Subjected to Isothermal Uniaxial Megaplastic Compression
title Mechanical Behavior and Structural Characterization of a Cu-Al-Ni-Based Shape-Memory Alloy Subjected to Isothermal Uniaxial Megaplastic Compression
title_full Mechanical Behavior and Structural Characterization of a Cu-Al-Ni-Based Shape-Memory Alloy Subjected to Isothermal Uniaxial Megaplastic Compression
title_fullStr Mechanical Behavior and Structural Characterization of a Cu-Al-Ni-Based Shape-Memory Alloy Subjected to Isothermal Uniaxial Megaplastic Compression
title_full_unstemmed Mechanical Behavior and Structural Characterization of a Cu-Al-Ni-Based Shape-Memory Alloy Subjected to Isothermal Uniaxial Megaplastic Compression
title_short Mechanical Behavior and Structural Characterization of a Cu-Al-Ni-Based Shape-Memory Alloy Subjected to Isothermal Uniaxial Megaplastic Compression
title_sort mechanical behavior and structural characterization of a cu-al-ni-based shape-memory alloy subjected to isothermal uniaxial megaplastic compression
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143215/
https://www.ncbi.nlm.nih.gov/pubmed/35629739
http://dx.doi.org/10.3390/ma15103713
work_keys_str_mv AT pushinvladimir mechanicalbehaviorandstructuralcharacterizationofacualnibasedshapememoryalloysubjectedtoisothermaluniaxialmegaplasticcompression
AT kuranovanataliya mechanicalbehaviorandstructuralcharacterizationofacualnibasedshapememoryalloysubjectedtoisothermaluniaxialmegaplasticcompression
AT sviridalexeye mechanicalbehaviorandstructuralcharacterizationofacualnibasedshapememoryalloysubjectedtoisothermaluniaxialmegaplasticcompression
AT ustyugovyurii mechanicalbehaviorandstructuralcharacterizationofacualnibasedshapememoryalloysubjectedtoisothermaluniaxialmegaplasticcompression