Cargando…
Temperature in the Friction Couple Consisting of Functionally Graded and Homogeneous Materials
An analytical model was developed to determine the temperature of friction coupling, in which one element was made of a functionally graded material (FGM) and the other was homogeneous. First, for such a system, the boundary–value problem of heat conduction was formulated with consideration of the h...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143305/ https://www.ncbi.nlm.nih.gov/pubmed/35629625 http://dx.doi.org/10.3390/ma15103600 |
Sumario: | An analytical model was developed to determine the temperature of friction coupling, in which one element was made of a functionally graded material (FGM) and the other was homogeneous. First, for such a system, the boundary–value problem of heat conduction was formulated with consideration of the heat generation due to friction. Then, using the Laplace integral transform, an exact solution to this problem was obtained for uniform sliding, and braking with constant deceleration. A numerical analysis was performed for the selected friction pair consisting of the FGM (zircon dioxide + titanium alloy) and cast iron. It was established that the use of elements made of a FGM consisting of ZrO(2) and Ti-6Al-4V can significantly reduce the maximum temperature achieved in the friction system. |
---|