Cargando…
Drug-Induced Immune Thrombocytopenia Toxicity Prediction Based on Machine Learning
Drug-induced immune thrombocytopenia (DITP) often occurs in patients receiving many drug treatments simultaneously. However, clinicians usually fail to accurately distinguish which drugs can be plausible culprits. Despite significant advances in laboratory-based DITP testing, in vitro experimental a...
Autores principales: | Wang, Binyou, Tan, Xiaoqiu, Guo, Jianmin, Xiao, Ting, Jiao, Yan, Zhao, Junlin, Wu, Jianming, Wang, Yiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9143325/ https://www.ncbi.nlm.nih.gov/pubmed/35631529 http://dx.doi.org/10.3390/pharmaceutics14050943 |
Ejemplares similares
-
Multitask CapsNet: An Imbalanced Data Deep Learning
Method for Predicting Toxicants
por: Wang, Yiwei, et al.
Publicado: (2021) -
Prediction of the effects of small molecules on the gut microbiome using machine learning method integrating with optimal molecular features
por: Wang, Binyou, et al.
Publicado: (2023) -
Machine learning approaches to predict drug efficacy and toxicity in oncology
por: Badwan, Bara A., et al.
Publicado: (2023) -
Predictive value of red blood cell distribution width in septic shock patients with thrombocytopenia: A retrospective study using machine learning
por: Ling, Jianmin, et al.
Publicado: (2021) -
An integrative machine learning approach for prediction of toxicity-related drug safety
por: Lysenko, Artem, et al.
Publicado: (2018)